IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v220y2021ics0360544220328279.html
   My bibliography  Save this article

Modelling and forecasting the oil consumptions of the BRICS-T countries

Author

Listed:
  • Karakurt, Izzet

Abstract

Oil’s widespread use in many economic activities has made it as one of the world’s most promising energy sources. It can drive or hinder economic development of a country based on its production and consumption. Given these facts, modeling and forecasting the oil consumption by region or a country becomes meaningful. Therefore, regression models were developed to forecast the future oil consumptions of the BRICS-T countries as emerging and growing economies using the time series of variables from 1965 to 2019 in this study. Then, the proposed models were verified through various statistical approaches including determination coefficient, F-and t-tests and predicted versus actual data. The governing variables on the oil consumptions were also determined statistically. Moreover, the forecasting performances of the proposed models were measured by error analysis of MAPE, RMSE, MAD, and PER. Furthermore, the future oil consumptions for the next 5, 10, 15 and 20 years were projected by the proposed models. The modeling results revealed that the proposed models could provide useful information for the scholars, policymakers and others stakeholders. Additionally, the forecasting results pointed out that the total oil consumptions of the BRICS-T countries in the next two decades would be increased by 70%.

Suggested Citation

  • Karakurt, Izzet, 2021. "Modelling and forecasting the oil consumptions of the BRICS-T countries," Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544220328279
    DOI: 10.1016/j.energy.2020.119720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220328279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Jing & Guo, Jinmei & Zheng, Songtao, 2012. "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3471-3480.
    2. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60.
    3. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    4. Seema Narayan & Thai-Ha Le & Badri Narayan Rath & Nadia Doytch, 2019. "Petroleum consumption and economic growth relationship: evidence from the Indian states," Asia-Pacific Sustainable Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 26(1), pages 21-65, June.
    5. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    6. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    7. Yazar, Isil & Yavuz, Hasan Serhan & Yavuz, Arzu Altin, 2017. "Comparison of various regression models for predicting compressor and turbine performance parameters," Energy, Elsevier, vol. 140(P2), pages 1398-1406.
    8. Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2015. "A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance," Energy, Elsevier, vol. 82(C), pages 570-577.
    9. Kok, Besir & Benli, Hüseyin, 2017. "Energy diversity and nuclear energy for sustainable development in Turkey," Renewable Energy, Elsevier, vol. 111(C), pages 870-877.
    10. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    11. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    12. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    13. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    14. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    15. ToksarI, M. Duran, 2009. "Estimating the net electricity energy generation and demand using the ant colony optimization approach: Case of Turkey," Energy Policy, Elsevier, vol. 37(3), pages 1181-1187, March.
    16. Sen, Doruk & Günay, M. Erdem & Tunç, K.M. Murat, 2019. "Forecasting annual natural gas consumption using socio-economic indicators for making future policies," Energy, Elsevier, vol. 173(C), pages 1106-1118.
    17. Cao, Guohua & Wu, Lijuan, 2016. "Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting," Energy, Elsevier, vol. 115(P1), pages 734-745.
    18. Azevedo, Vitor G. & Sartori, Simone & Campos, Lucila M.S., 2018. "CO2 emissions: A quantitative analysis among the BRICS nations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 107-115.
    19. Assareh, E. & Behrang, M.A. & Assari, M.R. & Ghanbarzadeh, A., 2010. "Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran," Energy, Elsevier, vol. 35(12), pages 5223-5229.
    20. Wang, Qiang & Li, Rongrong, 2017. "Decline in China's coal consumption: An evidence of peak coal or a temporary blip?," Energy Policy, Elsevier, vol. 108(C), pages 696-701.
    21. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions," Energy, Elsevier, vol. 163(C), pages 151-167.
    22. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
    23. Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    24. Zhang, Ming & Mu, Hailin & Li, Gang & Ning, Yadong, 2009. "Forecasting the transport energy demand based on PLSR method in China," Energy, Elsevier, vol. 34(9), pages 1396-1400.
    25. Gusarova, Svetlana, 2019. "Role of China in the development of trade and FDI cooperation with BRICS countries," China Economic Review, Elsevier, vol. 57(C).
    26. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "A trigonometric grey prediction approach to forecasting electricity demand," Energy, Elsevier, vol. 31(14), pages 2839-2847.
    27. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    28. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60, February.
    29. Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Manowska & Andrzej Nowrot, 2022. "Solar Farms as the Only Power Source for the Entire Country," Energies, MDPI, vol. 15(14), pages 1-15, July.
    2. Kassouri, Yacouba, 2022. "Boom-bust cycles in oil consumption: The role of explosive bubbles and asymmetric adjustments," Energy Economics, Elsevier, vol. 111(C).
    3. Palanisamy Manigandan & MD Shabbir Alam & Majed Alharthi & Uzma Khan & Kuppusamy Alagirisamy & Duraisamy Pachiyappan & Abdul Rehman, 2021. "Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models," Energies, MDPI, vol. 14(19), pages 1-17, September.
    4. Anna Manowska & Anna Bluszcz, 2022. "Forecasting Crude Oil Consumption in Poland Based on LSTM Recurrent Neural Network," Energies, MDPI, vol. 15(13), pages 1-23, July.
    5. Eda Fendoğlu, 2021. "Stationarity Test of Renewable Energy Consumption with Fractional Frequency Fourier Unit Root Test: Evidence from BRICS-T Countries," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 9(1), pages 99-110, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
    2. Karakurt, Izzet & Aydin, Gokhan, 2023. "Development of regression models to forecast the CO2 emissions from fossil fuels in the BRICS and MINT countries," Energy, Elsevier, vol. 263(PA).
    3. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    4. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    5. Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
    6. Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
    7. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    8. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    9. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    10. Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
    11. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    12. Günay, M. Erdem, 2016. "Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey," Energy Policy, Elsevier, vol. 90(C), pages 92-101.
    13. Akdi, Yılmaz & Gölveren, Elif & Okkaoğlu, Yasin, 2020. "Daily electrical energy consumption: Periodicity, harmonic regression method and forecasting," Energy, Elsevier, vol. 191(C).
    14. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    15. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
    16. Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
    17. Xiwen Cui & Shaojun E & Dongxiao Niu & Dongyu Wang & Mingyu Li, 2021. "An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    18. Pruethsan Sutthichaimethee & Danupon Ariyasajjakorn, 2018. "Relationships between Causal Factors Affecting Future Carbon Dioxide Output from Thailand’s Transportation Sector under the Government’s Sustainability Policy: Expanding the SEM-VECM Model," Resources, MDPI, vol. 7(4), pages 1-18, December.
    19. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    20. Anca Mehedintu & Mihaela Sterpu & Georgeta Soava, 2018. "Estimation and Forecasts for the Share of Renewable Energy Consumption in Final Energy Consumption by 2020 in the European Union," Sustainability, MDPI, vol. 10(5), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544220328279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.