IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i2p189-198.html
   My bibliography  Save this article

Thermo-economic optimisation of the integration of electrolysis in synthetic natural gas production from wood

Author

Listed:
  • Gassner, M.
  • Maréchal, F.

Abstract

Converting wood to grid quality methane allows to distribute a CO2 free, renewable energy resource in a conventional energy distribution system and use it in transportation applications. Applying a multi-objective optimisation algorithm to a previously developed thermo-economic process model for the thermochemical production of synthetic natural gas from wood, the present paper assesses the prospect of integrating an electrolyser in conversion systems based on directly and indirectly heated gasification. Due to an inherent lack of hydrogen for complete conversion of wood into methane and the possibility for rational use of oxygen, it is shown that electrolysis is an efficient and economically interesting option for increasing the gas output of the process while storing electricity and producing fuel that mitigates CO2 emissions.

Suggested Citation

  • Gassner, M. & Maréchal, F., 2008. "Thermo-economic optimisation of the integration of electrolysis in synthetic natural gas production from wood," Energy, Elsevier, vol. 33(2), pages 189-198.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:2:p:189-198
    DOI: 10.1016/j.energy.2007.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Fendt & Alexander Buttler & Matthias Gaderer & Hartmut Spliethoff, 2016. "Comparison of synthetic natural gas production pathways for the storage of renewable energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 327-350, May.
    2. Antar, Elie & Robert, Etienne, 2024. "Thermodynamic analysis of small-scale polygeneration systems producing natural gas, electricity, heat, and carbon dioxide from biomass," Energy, Elsevier, vol. 290(C).
    3. Codina Gironès, Víctor & Moret, Stefano & Peduzzi, Emanuela & Nasato, Marco & Maréchal, François, 2017. "Optimal use of biomass in large-scale energy systems: Insights for energy policy," Energy, Elsevier, vol. 137(C), pages 789-797.
    4. Clausen, Lasse R. & Butera, Giacomo & Jensen, Søren Højgaard, 2019. "Integration of anaerobic digestion with thermal gasification and pressurized solid oxide electrolysis cells for high efficiency bio-SNG production," Energy, Elsevier, vol. 188(C).
    5. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    6. Buttler, Alexander & Kunze, Christian & Spliethoff, Hartmut, 2013. "IGCC–EPI: Decentralized concept of a highly load-flexible IGCC power plant for excess power integration," Applied Energy, Elsevier, vol. 104(C), pages 869-879.
    7. Peduzzi, Emanuela & Tock, Laurence & Boissonnet, Guillaume & Maréchal, François, 2013. "Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol," Energy, Elsevier, vol. 58(C), pages 9-16.
    8. Leimert, Jonas M. & Neubert, Michael & Treiber, Peter & Dillig, Marius & Karl, Jürgen, 2018. "Combining the Heatpipe Reformer technology with hydrogen-intensified methanation for production of synthetic natural gas," Applied Energy, Elsevier, vol. 217(C), pages 37-46.
    9. Clausen, Lasse R. & Houbak, Niels & Elmegaard, Brian, 2010. "Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water," Energy, Elsevier, vol. 35(5), pages 2338-2347.
    10. Clausen, Lasse R., 2017. "Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification," Energy, Elsevier, vol. 125(C), pages 327-336.
    11. Tock, Laurence & Maréchal, François, 2012. "Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization," Energy, Elsevier, vol. 45(1), pages 339-349.
    12. Cortés, E. & Rivera, W., 2010. "Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the use of a heat transformer," Energy, Elsevier, vol. 35(3), pages 1289-1299.
    13. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    14. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    15. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
    16. Clausen, Lasse R., 2015. "Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification," Energy, Elsevier, vol. 85(C), pages 94-104.
    17. Seiler, Jean-Marie & Hohwiller, Carole & Imbach, Juliette & Luciani, Jean-François, 2010. "Technical and economical evaluation of enhanced biomass to liquid fuel processes," Energy, Elsevier, vol. 35(9), pages 3587-3592.
    18. Johansson, Viktor & Lehtveer, Mariliis & Göransson, Lisa, 2019. "Biomass in the electricity system: A complement to variable renewables or a source of negative emissions?," Energy, Elsevier, vol. 168(C), pages 532-541.
    19. Clausen, Lasse R. & Butera, Giacomo & Jensen, Søren Højgaard, 2019. "High efficiency SNG production from biomass and electricity by integrating gasification with pressurized solid oxide electrolysis cells," Energy, Elsevier, vol. 172(C), pages 1117-1131.
    20. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    21. Juraščík, Martin & Sues, Anna & Ptasinski, Krzysztof J., 2010. "Exergy analysis of synthetic natural gas production method from biomass," Energy, Elsevier, vol. 35(2), pages 880-888.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:2:p:189-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.