Modelling the Swedish wind power production using MERRA reanalysis data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2014.11.085
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Goić, R. & Krstulović, J. & Jakus, D., 2010. "Simulation of aggregate wind farm short-term production variations," Renewable Energy, Elsevier, vol. 35(11), pages 2602-2609.
- Kubik, M.L. & Brayshaw, D.J. & Coker, P.J. & Barlow, J.F., 2013. "Exploring the role of reanalysis data in simulating regional wind generation variability over Northern Ireland," Renewable Energy, Elsevier, vol. 57(C), pages 558-561.
- Hagspiel, Simeon & Papaemannouil, Antonis & Schmid, Matthias & Andersson, Göran, 2012. "Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid," Applied Energy, Elsevier, vol. 96(C), pages 33-44.
- Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
- Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
- Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
- Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015.
"Designing an index for assessing wind energy potential,"
Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
- Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2014. "Designing an index for assessing wind energy potential," SFB 649 Discussion Papers 2014-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Andresen, Gorm B. & Søndergaard, Anders A. & Greiner, Martin, 2015. "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy, Elsevier, vol. 93(P1), pages 1074-1088.
- Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
- Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
- Sharp, Ed & Dodds, Paul & Barrett, Mark & Spataru, Catalina, 2015. "Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information," Renewable Energy, Elsevier, vol. 77(C), pages 527-538.
- Nuño Martinez, Edgar & Cutululis, Nicolaos & Sørensen, Poul, 2018. "High dimensional dependence in power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 197-213.
- Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2015. "Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 319-337.
- Johann Baumgartner & Katharina Gruber & Sofia G. Simoes & Yves-Marie Saint-Drenan & Johannes Schmidt, 2020. "Less Information, Similar Performance: Comparing Machine Learning-Based Time Series of Wind Power Generation to Renewables.ninja," Energies, MDPI, vol. 13(9), pages 1-23, May.
- Jon Olauson & Johan Bladh & Joakim Lönnberg & Mikael Bergkvist, 2016. "A New Approach to Obtain Synthetic Wind Power Forecasts for Integration Studies," Energies, MDPI, vol. 9(10), pages 1-16, October.
- Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
- Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
- Ritter, Matthias & Deckert, Lars, 2017.
"Site assessment, turbine selection, and local feed-in tariffs through the wind energy index,"
Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
- Ritter, Matthias & Deckert, Lars, 2015. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," SFB 649 Discussion Papers 2015-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Elberg, Christina & Hagspiel, Simeon, 2013. "Spatial Dependencies of Wind Power and Interrelations with Spot Price Dynamics," EWI Working Papers 2013-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
- Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
- Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
- Cradden, Lucy C. & McDermott, Frank & Zubiate, Laura & Sweeney, Conor & O'Malley, Mark, 2017. "A 34-year simulation of wind generation potential for Ireland and the impact of large-scale atmospheric pressure patterns," Renewable Energy, Elsevier, vol. 106(C), pages 165-176.
More about this item
Keywords
Wind power; Physical model; Wind variability; MERRA reanalysis data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:717-725. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.