IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp168-180.html
   My bibliography  Save this article

Enhancing the performance of iron ore by introducing K and Na ions from biomass ashes in a CLC process

Author

Listed:
  • Yan, Jingchun
  • Shen, Laihong
  • Ou, Zhaowei
  • Wu, Jian
  • Jiang, Shouxi
  • Gu, Haiming

Abstract

Oxygen carrier holds a significant role in chemical looping combustion (CLC) process. High redox rate is a prerequisite for oxygen carrier when solid fuel is applied in CLC. The present work proposed iron ore modified by rape stalk ash (RSA) and wheat stalk ash (WSA). Dry calcination and wet impregnation methods were used. Effects of biomass ashes species, temperature, biomass ashes/undecorated iron ore (BA/UIO) mass ratio and cycle number on the performance of oxygen carrier were investigated in a laboratory fluidized bed reactor. The cumulative conversions of CO for BA-decorated oxygen carriers is significantly higher than that for UIO, especially for the oxygen carrier with BA/UIO mass ratio of 20/100 using dry calcination method. In the coal CLC batch tests, the water-gas shift reaction was accelerated, the time for carbon conversion stabilization was shorten and the conversion of CO to CO2 was improved with BA-decorated iron ore as oxygen carriers. Nevertheless, the promotive effect was weaken when temperature rose to 950 °C because of the sintering of oxygen carrier due to the generation of low-melting-point potassic compounds. The circulation experiments showed that the reactivity of two BA-decorated oxygen carriers was more stable during the 10 redox cycles compared with UIO.

Suggested Citation

  • Yan, Jingchun & Shen, Laihong & Ou, Zhaowei & Wu, Jian & Jiang, Shouxi & Gu, Haiming, 2019. "Enhancing the performance of iron ore by introducing K and Na ions from biomass ashes in a CLC process," Energy, Elsevier, vol. 167(C), pages 168-180.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:168-180
    DOI: 10.1016/j.energy.2018.09.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218318395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Zhen & He, Fang & Zheng, Anqing & Zhao, Kun & Chang, Sheng & Zhao, Zengli & Li, Haibin, 2013. "Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier," Energy, Elsevier, vol. 53(C), pages 244-251.
    2. Rawashdeh, Rami Al & Xavier-Oliveira, Emanuel & Maxwell, Philip, 2016. "The potash market and its future prospects," Resources Policy, Elsevier, vol. 47(C), pages 154-163.
    3. Zhu, Lin & He, Yangdong & Li, Luling & Wu, Pengbin, 2018. "Tech-economic assessment of second-generation CCS: Chemical looping combustion," Energy, Elsevier, vol. 144(C), pages 915-927.
    4. Gu, Haiming & Shen, Laihong & Zhong, Zhaoping & Niu, Xin & Liu, Weidong & Ge, Huijun & Jiang, Shouxi & Wang, Lulu, 2015. "Cement/CaO-modified iron ore as oxygen carrier for chemical looping combustion of coal," Applied Energy, Elsevier, vol. 157(C), pages 314-322.
    5. al Rawashdeh, Rami & Maxwell, Philip, 2014. "Analysing the world potash industry," Resources Policy, Elsevier, vol. 41(C), pages 143-151.
    6. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    7. Tijani, Mansour Mohammedramadan & Aqsha, Aqsha & Mahinpey, Nader, 2017. "Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system," Energy, Elsevier, vol. 138(C), pages 873-882.
    8. Dilmaç, Nesibe & Dilmaç, Ömer Faruk & Yardımcı, Esra, 2017. "Utilization of Menteş iron ore as oxygen carrier in Chemical-Looping Combustion," Energy, Elsevier, vol. 138(C), pages 785-798.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsiao Mun Lee & Jiahui Xiong & Xinfei Chen & Haitao Wang & Da Song & Jinlong Xie & Yan Lin & Ya Xiong & Zhen Huang & Hongyu Huang, 2023. "Evaluation of the Reactivity of Hematite Oxygen Carriers Modified Using Alkaline (Earth) Metals and Transition Metals for the Chemical Looping Conversion of Lignite," Energies, MDPI, vol. 16(6), pages 1-16, March.
    2. Chein, Rei-Yu & Hsu, Wen-Huai, 2020. "Thermodynamic equilibrium analysis of H2-rich syngas production via sorption-enhanced chemical looping biomass gasification," Renewable Energy, Elsevier, vol. 153(C), pages 117-129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
    2. Rami Rawashdeh, 2023. "Estimating short-run (SR) and long-run (LR) demand elasticities of phosphate," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 239-253, June.
    3. Vining, Aidan R. & Moore, Mark A., 2017. "Potash ownership and extraction: Between a rock and a hard place in Saskatchewan," Resources Policy, Elsevier, vol. 54(C), pages 71-80.
    4. Dmitrieva, D. & Ilinova, A. & Kraslawski, A., 2017. "Strategic management of the potash industry in Russia," Resources Policy, Elsevier, vol. 52(C), pages 81-89.
    5. Wang, Dechao & Jin, Lijun & Li, Yang & Yao, Demeng & Wang, Jiaofei & Hu, Haoquan, 2018. "Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3," Energy, Elsevier, vol. 162(C), pages 542-553.
    6. Yakovleva, Natalia & Chiwona, Annock G. & Manning, David A.C. & Heidrich, Oliver, 2021. "Circular economy and six approaches to improve potassium life cycle for global crop production," Resources Policy, Elsevier, vol. 74(C).
    7. Song, Xiaoqian & Geng, Yong & Zhang, Yuquan & Zhang, Xi & Gao, Ziyan & Li, Minghang, 2022. "Dynamic potassium flows analysis in China for 2010–2019," Resources Policy, Elsevier, vol. 78(C).
    8. Ilinova, Alina & Dmitrieva, Diana & Kraslawski, Andrzej, 2021. "Influence of COVID-19 pandemic on fertilizer companies: The role of competitive advantages," Resources Policy, Elsevier, vol. 71(C).
    9. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    10. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    12. Hinnerk Gnutzmann & Oskar Kowalewski & Piotr Śpiewanowski, 2020. "Market Structure and Resilience: Evidence from Potash Mine Disasters," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 911-933, May.
    13. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    14. Mohamed, Usama & Zhao, Yingjie & Huang, Yi & Cui, Yang & Shi, Lijuan & Li, Congming & Pourkashanian, Mohamed & Wei, Guoqiang & Yi, Qun & Nimmo, William, 2020. "Sustainability evaluation of biomass direct gasification using chemical looping technology for power generation with and w/o CO2 capture," Energy, Elsevier, vol. 205(C).
    15. Al Rawashdeh, Rami, 2020. "World peak potash: An analytical study," Resources Policy, Elsevier, vol. 69(C).
    16. Cormos, Calin-Cristian, 2020. "Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification," Energy, Elsevier, vol. 191(C).
    17. Zhu, Lin & He, Yangdong & Li, Luling & Lv, Liping & He, Jingling, 2018. "Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission," Energy, Elsevier, vol. 149(C), pages 34-46.
    18. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    19. Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
    20. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:168-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.