IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i3p379-388.html
   My bibliography  Save this article

The use of chemical recuperation of heat in a power plant

Author

Listed:
  • Verkhivker, Gregoriy
  • Kravchenko, Vladimir

Abstract

Chemical recuperation of heat is the most considerable method of increasing the efficiency of combined-cycle plants, but plants with chemical recuperation are not in application yet. In this paper, the causes of this phenomenon have been examined and the thermodynamic basis of using chemical recuperation of heat has been given. The energy efficiency of a combined cycle plant with chemical recuperation has reached 80–90% and more and it increases with lower reforming pressure. Additionally, chemical recuperation has raised the amount of gas fuel used in energy and chemical industries and has decreased the amount of waste carbon dioxide ejected into the environment by nearly 20%. The energy efficiency of a power plant with chemical recuperation must be calculated with registration of the methane which does not undergo a reaction in the reformer.

Suggested Citation

  • Verkhivker, Gregoriy & Kravchenko, Vladimir, 2004. "The use of chemical recuperation of heat in a power plant," Energy, Elsevier, vol. 29(3), pages 379-388.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:3:p:379-388
    DOI: 10.1016/j.energy.2003.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203002627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2003.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
    2. Pashchenko, Dmitry, 2022. "Natural gas reforming in thermochemical waste-heat recuperation systems: A review," Energy, Elsevier, vol. 251(C).
    3. Zhang, Silong & Qin, Jiang & Bao, Wen & Feng, Yu & Xie, Kaili, 2014. "Thermal management of fuel in advanced aeroengine in view of chemical recuperation," Energy, Elsevier, vol. 77(C), pages 201-211.
    4. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    5. Zhang, Silong & Cui, Naigang & Xiong, Yuefei & Feng, Yu & Qin, Jiang & Bao, Wen, 2017. "Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines," Energy, Elsevier, vol. 123(C), pages 9-19.
    6. Pashchenko, Dmitry & Makarov, Ivan, 2021. "Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis," Energy, Elsevier, vol. 222(C).
    7. Pashchenko, Dmitry, 2020. "A heat recovery rate of the thermochemical waste-heat recuperation systems based on experimental prediction," Energy, Elsevier, vol. 198(C).
    8. Sadeghi, Mohsen & Chitsaz, Ata & Marivani, Parisa & Yari, Mortaza & Mahmoudi, S.M.S., 2020. "Effects of thermophysical and thermochemical recuperation on the performance of combined gas turbine and organic rankine cycle power generation system: Thermoeconomic comparison and multi-objective op," Energy, Elsevier, vol. 210(C).
    9. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Thermochemical recuperation by steam methane reforming as an efficient alternative to steam injection in the gas turbines," Energy, Elsevier, vol. 258(C).
    10. Popov, S.K. & Svistunov, I.N. & Garyaev, A.B. & Serikov, E.A. & Temyrkanova, E.K., 2017. "The use of thermochemical recuperation in an industrial plant," Energy, Elsevier, vol. 127(C), pages 44-51.
    11. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    13. Oleksandr Cherednichenko & Valerii Havrysh & Vyacheslav Shebanin & Antonina Kalinichenko & Grzegorz Mentel & Joanna Nakonieczny, 2020. "Local Green Power Supply Plants Based on Alcohol Regenerative Gas Turbines: Economic and Environmental Aspects," Energies, MDPI, vol. 13(9), pages 1-20, May.
    14. Pashchenko, Dmitry, 2021. "Industrial furnaces with thermochemical waste-heat recuperation by coal gasification," Energy, Elsevier, vol. 221(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:3:p:379-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.