Flow field and combustion characteristics of integrated combustion mode using cavity with low flow resistance for gas turbine engines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.09.121
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, R.C. & Hao, F. & Fan, W.J., 2018. "Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines," Applied Energy, Elsevier, vol. 225(C), pages 940-954.
- Zhang, Rongchun & Xu, Quanyong & Fan, Weijun, 2018. "Effect of swirl field on the fuel concentration distribution and combustion characteristics in gas turbine combustor with cavity," Energy, Elsevier, vol. 162(C), pages 83-98.
- Zhang, R.C. & Fan, W.J. & Shi, Q. & Tan, W.L., 2014. "Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines," Applied Energy, Elsevier, vol. 130(C), pages 314-325.
- Zhang, R.C. & Fan, W.J. & Xing, F. & Song, S.W. & Shi, Q. & Tian, G.H. & Tan, W.L., 2015. "Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines," Energy, Elsevier, vol. 93(P2), pages 1535-1547.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, R.C. & Bai, N.J. & Fan, W.J. & Huang, X.Y. & Fan, X.Q., 2019. "Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity," Energy, Elsevier, vol. 189(C).
- Shilong, Zhao & Yuxin, Fan, 2020. "Experimental and numerical study on fuel distribution and flame expansion of the enhanced flame holding devices," Energy, Elsevier, vol. 203(C).
- Shilong, Zhao & Yuxin, Fan, 2020. "Experimental and numerical study on the flame characteristics and cooling effectiveness of air-cooled flame holder," Energy, Elsevier, vol. 209(C).
- Shilong, Zhao & Yuxin, Fan & Deng, Tiantai & Crookes, Danny, 2020. "Influence of injection scheme on flame characteristics in partially premixed combustion," Energy, Elsevier, vol. 205(C).
- Zhang, R.C. & Huang, X.Y. & Fan, W.J. & Bai, N.J., 2019. "Influence of injection mode on the combustion characteristics of slight temperature rise combustion in gas turbine combustor with cavity," Energy, Elsevier, vol. 179(C), pages 603-617.
- Xiangzhong Jia & Yong Shan & Xingping Xu & Jingzhou Zhang & Xiaoming Tan, 2021. "Effects of Bypass Flow Distribution on Cold Flow Characteristics of Integrated Afterburner," Energies, MDPI, vol. 14(18), pages 1-17, September.
- Joo, Seongpil & Choi, Jongwun & Lee, Min Chul & Kim, Namkeun, 2021. "Prognosis of combustion instability in a gas turbine combustor using spectral centroid & spread," Energy, Elsevier, vol. 224(C).
- Miao, Junjie & Fan, Yuxin & Wu, Weiqiu & Zhao, Shilong, 2021. "Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor," Applied Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, R.C. & Huang, X.Y. & Fan, W.J. & Bai, N.J., 2019. "Influence of injection mode on the combustion characteristics of slight temperature rise combustion in gas turbine combustor with cavity," Energy, Elsevier, vol. 179(C), pages 603-617.
- Zhang, R.C. & Bai, N.J. & Fan, W.J. & Huang, X.Y. & Fan, X.Q., 2019. "Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity," Energy, Elsevier, vol. 189(C).
- Zhang, Rongchun & Xu, Quanyong & Fan, Weijun, 2018. "Effect of swirl field on the fuel concentration distribution and combustion characteristics in gas turbine combustor with cavity," Energy, Elsevier, vol. 162(C), pages 83-98.
- Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
- Li, Mingyu & Wang, Qian & He, Xiaomin & Xiao, Jiankun & Ma, Heng, 2022. "Effects of fuel injection on the combustion and emission performance of a trapped vortex combustor," Energy, Elsevier, vol. 252(C).
- Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Ge, Zhenghao & Sun, Yuan, 2017. "Dome structure effects on combustion performance of a trapped vortex combustor," Applied Energy, Elsevier, vol. 208(C), pages 72-82.
- Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Yao, Kanghong & Ge, Zhenghao, 2018. "Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer," Applied Energy, Elsevier, vol. 216(C), pages 286-295.
- Shilong, Zhao & Yuxin, Fan & Deng, Tiantai & Crookes, Danny, 2020. "Influence of injection scheme on flame characteristics in partially premixed combustion," Energy, Elsevier, vol. 205(C).
- Zhao, Yuling & He, Xiaomin & Li, Mingyu, 2020. "Effect of mainstream forced entrainment on the combustion performance of a gas turbine combustor," Applied Energy, Elsevier, vol. 279(C).
- Zhang, R.C. & Hao, F. & Fan, W.J., 2018. "Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines," Applied Energy, Elsevier, vol. 225(C), pages 940-954.
- Miao, Junjie & Fan, Yuxin & Wu, Weiqiu & Zhao, Shilong, 2021. "Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor," Applied Energy, Elsevier, vol. 283(C).
- Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
- Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
- Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
- Zhang, R.C. & Fan, W.J. & Xing, F. & Song, S.W. & Shi, Q. & Tian, G.H. & Tan, W.L., 2015. "Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines," Energy, Elsevier, vol. 93(P2), pages 1535-1547.
- Shen, Wenkai & Liu, Li & Hu, Qiming & Liu, Guichuang & Wang, Jiwei & Zhang, Ning & Wu, Shaohua & Qiu, Penghua & Song, Shaowei, 2021. "Combustion characteristics of ignition processes for lean premixed swirling combustor under visual conditions," Energy, Elsevier, vol. 218(C).
- Gonca, Guven, 2017. "Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters," Energy, Elsevier, vol. 124(C), pages 579-588.
- Jin, Yi & Li, Yefang & He, Xiaomin & Zhang, Jingyu & Jiang, Bo & Wu, Zejun & Song, Yaoyu, 2014. "Experimental investigations on flow field and combustion characteristics of a model trapped vortex combustor," Applied Energy, Elsevier, vol. 134(C), pages 257-269.
- Han, Zhezhe & Hossain, Md. Moinul & Wang, Yuwei & Li, Jian & Xu, Chuanlong, 2020. "Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network," Applied Energy, Elsevier, vol. 259(C).
- Fu, Zaiguo & Sui, Lichao & Lu, Jin & Liu, Jiang & Weng, Peifen & Zeng, Zhuoxiong & Pan, Weiguo, 2023. "Investigation on effects of hydrogen addition to the thermal performance of a traditional counter-flow combustor," Energy, Elsevier, vol. 262(PA).
More about this item
Keywords
Integrated combustion; Trapped vortex combustor; Cavity; Structure; Flow resistance; Liquid fuel;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:979-996. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.