IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics036054422401778x.html
   My bibliography  Save this article

Influence of a double-mixer configuration on the mixing and combustion characteristics of a multibypass combustor for a turbine-based combined cycle engine

Author

Listed:
  • Zhao, Wensheng
  • Fan, Weijun
  • Zhang, Rongchun

Abstract

The changes in the flow field and combustion characteristics induced by the mode transition process of a turbine-based combined cycle (TBCC) engine may lead to failure of the mode transition. In this paper, the cold mixing characteristics, combustion efficiency, and cold and thermal flow losses of a TBCC multibypass combustor with a double-mixer configuration are investigated through numerical simulations, and the correlations between the thermal mixing efficiency and combustion efficiency is established. The results show that the thermal mixing efficiency of double-lobed mixer combustors is better at low ram inlet Mach numbers, but the ring-plus-lobed mixer combustor has better mixing and combustor characteristics at relatively high Mach numbers. However, the effect of the turbo core inlet Mach number on the combustion efficiency is not regular. The spacing between the double mixers that maximizes the mixing and combustion characteristics of the combustor is 75 mm. With increasing of expansion angle of the lobed mixer, the thermal mixing efficiency and combustion efficiency increase by 31.9 % and 23.3 %, respectively. In addition, the positive correlation coefficient between combustion efficiency and thermal mixing efficiency caused by changes in the inlet Mach number is greater than that caused by changes in structural parameters.

Suggested Citation

  • Zhao, Wensheng & Fan, Weijun & Zhang, Rongchun, 2024. "Influence of a double-mixer configuration on the mixing and combustion characteristics of a multibypass combustor for a turbine-based combined cycle engine," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s036054422401778x
    DOI: 10.1016/j.energy.2024.132004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401778X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s036054422401778x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.