IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5842-d636155.html
   My bibliography  Save this article

Effects of Bypass Flow Distribution on Cold Flow Characteristics of Integrated Afterburner

Author

Listed:
  • Xiangzhong Jia

    (College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Yong Shan

    (College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Xingping Xu

    (Shenyang Engine Research Institute, Aero Engine Corporation of China, Shenyang 110015, China)

  • Jingzhou Zhang

    (College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Xiaoming Tan

    (College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

Integrated design is a trend in the development of afterburners, and the distribution of cold flow is directly related to their flow field characteristics, combustion organization, and the cooling effect of components. Numerical simulations were performed to illustrate the effects of bypass flow distribution on the flow distribution, mixing characteristics, and cooling efficiency of the components by varying the cooling flow path structure parameters. Within the range of parameters in this study, it can be indicated that with the increase of heat shield inlet height and afterburner annulus height, the total pressure recovery coefficient along the path increased accordingly, and the increasing rate at the afterburner outlet is 1.12% and 1.19%, respectively. The average cooling efficiency of radial flameholder, circumferential flameholder, and fuel injector all decrease, but the rate of decrease varies slightly depending on the location of the components. The increase of heat shield inlet height would reduce thermal mixing efficiency by approximately 5.4% at the afterburner outlet, and the increase of afterburner annular height would increase about 2.9%.

Suggested Citation

  • Xiangzhong Jia & Yong Shan & Xingping Xu & Jingzhou Zhang & Xiaoming Tan, 2021. "Effects of Bypass Flow Distribution on Cold Flow Characteristics of Integrated Afterburner," Energies, MDPI, vol. 14(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5842-:d:636155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, R.C. & Bai, N.J. & Fan, W.J. & Yan, W.H. & Hao, F. & Yin, C.M., 2018. "Flow field and combustion characteristics of integrated combustion mode using cavity with low flow resistance for gas turbine engines," Energy, Elsevier, vol. 165(PA), pages 979-996.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Wensheng & Fan, Weijun & Zhang, Rongchun, 2024. "Influence of a double-mixer configuration on the mixing and combustion characteristics of a multibypass combustor for a turbine-based combined cycle engine," Energy, Elsevier, vol. 304(C).
    2. Shilong, Zhao & Yuxin, Fan & Deng, Tiantai & Crookes, Danny, 2020. "Influence of injection scheme on flame characteristics in partially premixed combustion," Energy, Elsevier, vol. 205(C).
    3. Joo, Seongpil & Choi, Jongwun & Lee, Min Chul & Kim, Namkeun, 2021. "Prognosis of combustion instability in a gas turbine combustor using spectral centroid & spread," Energy, Elsevier, vol. 224(C).
    4. Zhang, R.C. & Bai, N.J. & Fan, W.J. & Huang, X.Y. & Fan, X.Q., 2019. "Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity," Energy, Elsevier, vol. 189(C).
    5. Shilong, Zhao & Yuxin, Fan, 2020. "Experimental and numerical study on the flame characteristics and cooling effectiveness of air-cooled flame holder," Energy, Elsevier, vol. 209(C).
    6. Shilong, Zhao & Yuxin, Fan, 2020. "Experimental and numerical study on fuel distribution and flame expansion of the enhanced flame holding devices," Energy, Elsevier, vol. 203(C).
    7. Zhang, R.C. & Huang, X.Y. & Fan, W.J. & Bai, N.J., 2019. "Influence of injection mode on the combustion characteristics of slight temperature rise combustion in gas turbine combustor with cavity," Energy, Elsevier, vol. 179(C), pages 603-617.
    8. Miao, Junjie & Fan, Yuxin & Wu, Weiqiu & Zhao, Shilong, 2021. "Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5842-:d:636155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.