IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp1133-1138.html
   My bibliography  Save this article

Nickel-based bilayer thin-film anodes for low-temperature solid oxide fuel cells

Author

Listed:
  • Lee, Yeageun
  • Park, Joonho
  • Yu, Wonjong
  • Tanveer, Waqas Hassan
  • Lee, Yoon Ho
  • Cho, Gu Young
  • Park, Taehyun
  • Zheng, Chunhua
  • Lee, Wonyoung
  • Cha, Suk Won

Abstract

In this study, we investigate the possibility of using Ni-based anodes as alternatives to the Pt-based anodes for thin-film solid oxide fuel cells (SOFCs) operating at low temperatures. Anodes, electrolytes, and cathodes are sequentially sputtered onto a nanoporous substrate. The pure Ni anodes with modified nanostructures exhibit comparable performance as that of the optimized Pt anodes. Furthermore, a Ni/Ni-YSZ bilayer anode fabricated via a co-sputtering method exhibits approximately 37% higher peak power density than does the optimized Pt anode at 500 °C, demonstrating that noble metal anodes can be replaced by Ni-based anodes in low-temperature SOFCs by optimizing the anode nanostructure.

Suggested Citation

  • Lee, Yeageun & Park, Joonho & Yu, Wonjong & Tanveer, Waqas Hassan & Lee, Yoon Ho & Cho, Gu Young & Park, Taehyun & Zheng, Chunhua & Lee, Wonyoung & Cha, Suk Won, 2018. "Nickel-based bilayer thin-film anodes for low-temperature solid oxide fuel cells," Energy, Elsevier, vol. 161(C), pages 1133-1138.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1133-1138
    DOI: 10.1016/j.energy.2018.07.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zongping Shao & Sossina M. Haile, 2004. "A high-performance cathode for the next generation of solid-oxide fuel cells," Nature, Nature, vol. 431(7005), pages 170-173, September.
    2. Yan, Dong & Liang, Lingjiang & Yang, Jiajun & Zhang, Tao & Pu, Jian & Chi, Bo & Li, Jian, 2017. "Performance degradation and analysis of 10-cell anode-supported SOFC stack with external manifold structure," Energy, Elsevier, vol. 125(C), pages 663-670.
    3. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    4. Park, Joonho & Lee, Yeageun & Chang, Ikwhang & Cho, Gu Young & Ji, Sanghoon & Lee, Wonyoung & Cha, Suk Won, 2016. "Atomic layer deposition of yttria-stabilized zirconia thin films for enhanced reactivity and stability of solid oxide fuel cells," Energy, Elsevier, vol. 116(P1), pages 170-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongqing Wang & Bo An & Ke Wang & Yan Cao & Fan Gao, 2020. "Identification of Restricting Parameters on Steps toward the Intermediate-Temperature Planar Solid Oxide Fuel Cell," Energies, MDPI, vol. 13(23), pages 1-15, December.
    2. Yongqing Wang & Xingchen Li & Zhenning Guo & Ke Wang & Yan Cao, 2021. "Effect of the Reactant Transportation on Performance of a Planar Solid Oxide Fuel Cell," Energies, MDPI, vol. 14(4), pages 1-14, February.
    3. Cho, Gu Young & Lee, Yoon Ho & Yu, Wonjong & An, Jihwan & Cha, Suk Won, 2019. "Optimization of Y2O3 dopant concentration of yttria stabilized zirconia thin film electrolyte prepared by plasma enhanced atomic layer deposition for high performance thin film solid oxide fuel cells," Energy, Elsevier, vol. 173(C), pages 436-442.
    4. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Ma & Suning Ma & Xinyi Zhang & Daifen Chen & Juan He, 2018. "Development of Large-Scale and Quasi Multi-Physics Model for Whole Structure of the Typical Solid Oxide Fuel Cell Stacks," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    2. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    3. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.
    4. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    5. Vinoth Kumar, R. & Khandale, A.P., 2022. "A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Edoardo Magnone, 2014. "A novel graphical representation of sentence complexity: the description and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1301-1329, February.
    7. Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
    8. Zuoqing Liu & Yuesheng Bai & Hainan Sun & Daqin Guan & Wenhuai Li & Wei-Hsiang Huang & Chih-Wen Pao & Zhiwei Hu & Guangming Yang & Yinlong Zhu & Ran Ran & Wei Zhou & Zongping Shao, 2024. "Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    10. Yuanwu Xu & Hao Shu & Hongchuan Qin & Xiaolong Wu & Jingxuan Peng & Chang Jiang & Zhiping Xia & Yongan Wang & Xi Li, 2022. "Real-Time State of Health Estimation for Solid Oxide Fuel Cells Based on Unscented Kalman Filter," Energies, MDPI, vol. 15(7), pages 1-17, March.
    11. Lee, Sanghoon & Lee, Yeageun & Park, Joonho & Yu, Wonjong & Cho, Gu Young & Kim, Yusung & Cha, Suk Won, 2019. "Effect of plasma-enhanced atomic layer deposited YSZ inter-layer on cathode interface of GDC electrolyte in thin film solid oxide fuel cells," Renewable Energy, Elsevier, vol. 144(C), pages 123-128.
    12. Chen, Xudong & Ji, Yutao & Yan, Dong & Jia, Lichao & Han, Xiaotao & Wu, Kaiming & Yang, Jiajun & Li, Jian, 2024. "Thermal stress and contact analysis utilizing tested temperature data in a kW-class external-manifold solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 370(C).
    13. Hong Zhang & Zuobin Zhang & Zhou Li & Hongjie Han & Weiguo Song & Jianxin Yi, 2023. "A chemiresistive-potentiometric multivariate sensor for discriminative gas detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Wu, Xiao-long & Xu, Yuan-Wu & Xue, Tao & Zhao, Dong-qi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2019. "Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment," Applied Energy, Elsevier, vol. 248(C), pages 126-140.
    15. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    16. Choi, Indae & Kim, Jung-Sik & Venkatesan, Vijay & Ranaweera, Manoj, 2017. "Fabrication and evaluation of a novel wavy Single Chamber Solid Oxide Fuel Cell via in-situ monitoring of curvature evolution," Applied Energy, Elsevier, vol. 195(C), pages 1038-1046.
    17. Marocco, Paolo & Ferrero, Domenico & Lanzini, Andrea & Santarelli, Massimo, 2019. "Benefits from heat pipe integration in H2/H2O fed SOFC systems," Applied Energy, Elsevier, vol. 241(C), pages 472-482.
    18. Meng, Xiuxia & Liu, Yongna & Yang, Naitao & Tan, Xiaoyao & Liu, Jian & Diniz da Costa, João C. & Liu, Shaomin, 2017. "Highly compact and robust hollow fiber solid oxide cells for flexible power generation and gas production," Applied Energy, Elsevier, vol. 205(C), pages 741-748.
    19. Zhiheng Li & Xin Mao & Desheng Feng & Mengran Li & Xiaoyong Xu & Yadan Luo & Linzhou Zhuang & Rijia Lin & Tianjiu Zhu & Fengli Liang & Zi Huang & Dong Liu & Zifeng Yan & Aijun Du & Zongping Shao & Zho, 2024. "Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1133-1138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.