IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp436-442.html
   My bibliography  Save this article

Optimization of Y2O3 dopant concentration of yttria stabilized zirconia thin film electrolyte prepared by plasma enhanced atomic layer deposition for high performance thin film solid oxide fuel cells

Author

Listed:
  • Cho, Gu Young
  • Lee, Yoon Ho
  • Yu, Wonjong
  • An, Jihwan
  • Cha, Suk Won

Abstract

In this study, the Y2O3 doping concentration of yttria stabilized zirconia (YSZ) thin film electrolyte deposited by plasma enhanced atomic layer deposition (PEALD) is optimized to maximize the performance of thin film solid oxide fuel cells (TF-SOFCs). The PEALD YSZ thin films are highly crystalline, and the Y2O3 concentration is controlled by changing the ratio between ZrO2 and Y2O3 ALD cycles. Electrochemical performances of TF-SOFCs are strongly dependent on the Y2O3 doping concentration in electrolytes. The cell with 10.7 mol% doped YSZ achieves the best performance (180 mW/cm2) at 450 °C due to decreased polarization loss because of its higher density of oxygen vacancies. These results demonstrate the effectiveness of PEALD process to deposit crystalline YSZ thin film electrolytes with optimal doping for high performance TF-SOFCs.

Suggested Citation

  • Cho, Gu Young & Lee, Yoon Ho & Yu, Wonjong & An, Jihwan & Cha, Suk Won, 2019. "Optimization of Y2O3 dopant concentration of yttria stabilized zirconia thin film electrolyte prepared by plasma enhanced atomic layer deposition for high performance thin film solid oxide fuel cells," Energy, Elsevier, vol. 173(C), pages 436-442.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:436-442
    DOI: 10.1016/j.energy.2019.01.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930132X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paek, Jun Yeol & Chang, Ikwhang & Park, Joon Ho & Ji, Sanghoon & Cha, Suk Won, 2014. "A study on properties of yttrium-stabilized zirconia thin films fabricated by different deposition techniques," Renewable Energy, Elsevier, vol. 65(C), pages 202-206.
    2. Park, Joonho & Lee, Yeageun & Chang, Ikwhang & Cho, Gu Young & Ji, Sanghoon & Lee, Wonyoung & Cha, Suk Won, 2016. "Atomic layer deposition of yttria-stabilized zirconia thin films for enhanced reactivity and stability of solid oxide fuel cells," Energy, Elsevier, vol. 116(P1), pages 170-176.
    3. Lee, Yeageun & Park, Joonho & Yu, Wonjong & Tanveer, Waqas Hassan & Lee, Yoon Ho & Cho, Gu Young & Park, Taehyun & Zheng, Chunhua & Lee, Wonyoung & Cha, Suk Won, 2018. "Nickel-based bilayer thin-film anodes for low-temperature solid oxide fuel cells," Energy, Elsevier, vol. 161(C), pages 1133-1138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Carda & Nela Adamová & Daniel Budáč & Veronika Rečková & Martin Paidar & Karel Bouzek, 2022. "Impact of Preparation Method and Y 2 O 3 Content on the Properties of the YSZ Electrolyte," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Romo Jiménez, Oscar Arturo & Noda, René López & Portelles, J. & Vázquez Arce, Jorge Luis & Iñiguez, Enrique & López Mercado, Cesar Alberto & Solorio, Fernando & Rebellon, Julia & Read, John & Tiznado,, 2022. "The effect of temperature and bias on the energy storage of a Ru/YSZ/Ru thin-film device," Energy, Elsevier, vol. 253(C).
    3. Koo, Taehyung & Kim, Young Sang & Lee, Dongkeun & Yu, Sangseok & Lee, Young Duk, 2021. "System simulation and exergetic analysis of solid oxide fuel cell power generation system with cascade configuration," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    2. Serikzhan Opakhai & Kairat Kuterbekov, 2023. "Metal-Supported Solid Oxide Fuel Cells: A Review of Recent Developments and Problems," Energies, MDPI, vol. 16(12), pages 1-24, June.
    3. Lee, Sanghoon & Lee, Yeageun & Park, Joonho & Yu, Wonjong & Cho, Gu Young & Kim, Yusung & Cha, Suk Won, 2019. "Effect of plasma-enhanced atomic layer deposited YSZ inter-layer on cathode interface of GDC electrolyte in thin film solid oxide fuel cells," Renewable Energy, Elsevier, vol. 144(C), pages 123-128.
    4. Lee, Yeageun & Park, Joonho & Yu, Wonjong & Tanveer, Waqas Hassan & Lee, Yoon Ho & Cho, Gu Young & Park, Taehyun & Zheng, Chunhua & Lee, Wonyoung & Cha, Suk Won, 2018. "Nickel-based bilayer thin-film anodes for low-temperature solid oxide fuel cells," Energy, Elsevier, vol. 161(C), pages 1133-1138.
    5. Park, Joonho & Lee, Yeageun & Chang, Ikwhang & Cho, Gu Young & Ji, Sanghoon & Lee, Wonyoung & Cha, Suk Won, 2016. "Atomic layer deposition of yttria-stabilized zirconia thin films for enhanced reactivity and stability of solid oxide fuel cells," Energy, Elsevier, vol. 116(P1), pages 170-176.
    6. Yongqing Wang & Bo An & Ke Wang & Yan Cao & Fan Gao, 2020. "Identification of Restricting Parameters on Steps toward the Intermediate-Temperature Planar Solid Oxide Fuel Cell," Energies, MDPI, vol. 13(23), pages 1-15, December.
    7. Yongqing Wang & Xingchen Li & Zhenning Guo & Ke Wang & Yan Cao, 2021. "Effect of the Reactant Transportation on Performance of a Planar Solid Oxide Fuel Cell," Energies, MDPI, vol. 14(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:436-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.