IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1212-d504514.html
   My bibliography  Save this article

Effect of the Reactant Transportation on Performance of a Planar Solid Oxide Fuel Cell

Author

Listed:
  • Yongqing Wang

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450002, China)

  • Xingchen Li

    (School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450002, China)

  • Zhenning Guo

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450002, China)

  • Ke Wang

    (School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450002, China)

  • Yan Cao

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China)

Abstract

The process of reactant transportation greatly affects the performance of solid oxide fuel cells (SOFCs). Therefore, a three-dimension numerical SOFC model was built to evaluate mainly the effect of the reactant transportation coupling of heat and mass transfer and electrochemical reactions, and the reliability of numerical calculations was validated. Numerical studies revealed the correlation of both increase of reactant concentration gradients and improved mass transfer capability of multi reactants in gas diffusion electrode with the enhancement of the SOFC performance, in the condition of enough supplies of the fuel and the oxidant. Further studies identified the oxygen ions conductivity in electrolytes played a critical role in energy output and thus the performance of SOFCs. For example, the current density would increase by 65% if the ionic conductivity of electrolytes doubled. This study gives insight into the significance of operational conditions, electrolytes, and structures on the ionic oxygen conductivity and further on the optimization of the SOFCs. Overall, the numerical modeling leads a clear path toward the optimization of SOFCs.

Suggested Citation

  • Yongqing Wang & Xingchen Li & Zhenning Guo & Ke Wang & Yan Cao, 2021. "Effect of the Reactant Transportation on Performance of a Planar Solid Oxide Fuel Cell," Energies, MDPI, vol. 14(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1212-:d:504514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1212/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kupecki, Jakub & Motylinski, Konrad & Milewski, Jaroslaw, 2018. "Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model," Applied Energy, Elsevier, vol. 227(C), pages 198-205.
    2. He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
    3. Hajimolana, S. Ahmad & Hussain, M. Azlan & Daud, W.M. Ashri Wan & Soroush, M. & Shamiri, A., 2011. "Mathematical modeling of solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1893-1917, May.
    4. Paulina Pianko-Oprych & S. M. Hosseini, 2017. "Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks Power Generation System," Energies, MDPI, vol. 10(12), pages 1-21, December.
    5. Shixue Liu & Wei Kong & Zijing Lin, 2009. "A Microscale Modeling Tool for the Design and Optimization of Solid Oxide Fuel Cells," Energies, MDPI, vol. 2(2), pages 1-18, June.
    6. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    7. Jee Min Park & Dae Yun Kim & Jong Dae Baek & Yong-Jin Yoon & Pei-Chen Su & Seong Hyuk Lee, 2018. "Effect of Electrolyte Thickness on Electrochemical Reactions and Thermo-Fluidic Characteristics inside a SOFC Unit Cell," Energies, MDPI, vol. 11(3), pages 1-15, February.
    8. Lee, Yeageun & Park, Joonho & Yu, Wonjong & Tanveer, Waqas Hassan & Lee, Yoon Ho & Cho, Gu Young & Park, Taehyun & Zheng, Chunhua & Lee, Wonyoung & Cha, Suk Won, 2018. "Nickel-based bilayer thin-film anodes for low-temperature solid oxide fuel cells," Energy, Elsevier, vol. 161(C), pages 1133-1138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongqing Wang & Bo An & Ke Wang & Yan Cao & Fan Gao, 2020. "Identification of Restricting Parameters on Steps toward the Intermediate-Temperature Planar Solid Oxide Fuel Cell," Energies, MDPI, vol. 13(23), pages 1-15, December.
    2. Jee Min Park & Dae Yun Kim & Jong Dae Baek & Yong-Jin Yoon & Pei-Chen Su & Seong Hyuk Lee, 2018. "Effect of Electrolyte Thickness on Electrochemical Reactions and Thermo-Fluidic Characteristics inside a SOFC Unit Cell," Energies, MDPI, vol. 11(3), pages 1-15, February.
    3. Tomasz A. Prokop & Grzegorz Brus & Shinji Kimijima & Janusz S. Szmyd, 2020. "Thin Solid Film Electrolyte and Its Impact on Electrode Polarization in Solid Oxide Fuel Cells Studied by Three-Dimensional Microstructure-Scale Numerical Simulation," Energies, MDPI, vol. 13(19), pages 1-14, October.
    4. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    5. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    6. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    7. Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
    8. He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
    9. Maciej Ławryńczuk, 2018. "Towards Reduced-Order Models of Solid Oxide Fuel Cell," Complexity, Hindawi, vol. 2018, pages 1-18, July.
    10. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    11. Kim, Taebeen & Kang, Sanggyu, 2023. "Numerical analysis of a highly efficient cascade solid oxide fuel cell system with a fuel regenerator," Applied Energy, Elsevier, vol. 341(C).
    12. Wei Kong & Xiang Gao & Shixue Liu & Shichuan Su & Daifen Chen, 2014. "Optimization of the Interconnect Ribs for a Cathode-Supported Solid Oxide Fuel Cell," Energies, MDPI, vol. 7(1), pages 1-19, January.
    13. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    14. Paola Costamagna & Simone Grosso & Rowland Travis & Loredana Magistri, 2015. "Integrated Planar Solid Oxide Fuel Cell: Steady-State Model of a Bundle and Validation through Single Tube Experimental Data," Energies, MDPI, vol. 8(11), pages 1-24, November.
    15. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.
    17. Rhushikesh Ghotkar & Ryan J. Milcarek, 2022. "Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    18. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    19. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    20. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1212-:d:504514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.