IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp965-978.html
   My bibliography  Save this article

Model-based analysis of Intended Nationally Determined Contributions and 2 °C pathways for major economies

Author

Listed:
  • Fragkos, Panagiotis
  • Kouvaritakis, Nikos

Abstract

The 2015 Paris Agreement includes Intended Nationally Determined Contributions (INDCs) that describe the contribution of different nations to the global target of limiting world average temperature increase to levels well below 2° Celsius (2 °C). The current study uses the PROMETHEUS global energy-economy model to assess CO2 emission trajectories and energy system transformation pathways for Reference, INDC and cost-optimal 2 °C mitigation scenarios in four major economies (USA, EU, China, India) and globally. The 2 °C target implies a drastic reduction of emissions as well as significant transformation of the global energy system away from fossil fuels and towards Renewable Energy Sources (RES), and energy efficiency improvements. Comparison of 2 °C mitigation pathways with INDCs shows that in the EU and USA, the projected 2030 INDC emission targets are relatively close to the emissions reduction requirement of the cost-optimal 2 °C trajectory; however, in China, India and globally there is a large gap between INDCs and the optimal 2 °C pathway. Ambitious climate policies lead to reduced international fossil fuel prices, with bigger decline projected for coal price. National mitigation costs highly depend on the level of ambition of climate policies, but are generally projected to be lower than 2% of GDP over 2010–2050.

Suggested Citation

  • Fragkos, Panagiotis & Kouvaritakis, Nikos, 2018. "Model-based analysis of Intended Nationally Determined Contributions and 2 °C pathways for major economies," Energy, Elsevier, vol. 160(C), pages 965-978.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:965-978
    DOI: 10.1016/j.energy.2018.07.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heleen L. van Soest & Lara Aleluia Reis & Laurent Drouet & Detlef P. van Vuuren & Michel G. J. den Elzen & Massimo Tavoni & Keigo Akimoto & Katherine V. Calvin & Panagiotis Fragkos & Alban Kitous & Gu, 2017. "Low-emission pathways in 11 major economies: comparison of cost-optimal pathways and Paris climate proposals," Climatic Change, Springer, vol. 142(3), pages 491-504, June.
    2. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
    3. Michel Elzen & Annemiek Admiraal & Mark Roelfsema & Heleen Soest & Andries F. Hof & Nicklas Forsell, 2016. "Contribution of the G20 economies to the global impact of the Paris agreement climate proposals," Climatic Change, Springer, vol. 137(3), pages 655-665, August.
    4. Clarke, John F. & Edmonds, J. A., 1993. "Modelling energy technologies in a competitive market," Energy Economics, Elsevier, vol. 15(2), pages 123-129, April.
    5. Bosetti, Valentina & De Cian, Enrica & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Sustainable Development Papers 55284, Fondazione Eni Enrico Mattei (FEEM).
    6. Paroussos, Leonidas & Fragkos, Panagiotis & Capros, Pantelis & Fragkiadakis, Kostas, 2015. "Assessment of carbon leakage through the industry channel: The EU perspective," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 204-219.
    7. Fragkos, Panagiotis & Tasios, Nikos & Paroussos, Leonidas & Capros, Pantelis & Tsani, Stella, 2017. "Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050," Energy Policy, Elsevier, vol. 100(C), pages 216-226.
    8. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    9. Hof, Andries F. & den Elzen, Michel G.J. & Admiraal, Annemiek & Roelfsema, Mark & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2017. "Global and regional abatement costs of Nationally Determined Contributions (NDCs) and of enhanced action to levels well below 2°C and 1.5°C," Environmental Science & Policy, Elsevier, vol. 71(C), pages 30-40.
    10. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    11. Levesque, Antoine & Pietzcker, Robert C. & Baumstark, Lavinia & De Stercke, Simon & Grübler, Arnulf & Luderer, Gunnar, 2018. "How much energy will buildings consume in 2100? A global perspective within a scenario framework," Energy, Elsevier, vol. 148(C), pages 514-527.
    12. Gokul Iyer & James Edmonds, 2018. "Interpreting energy scenarios," Nature Energy, Nature, vol. 3(5), pages 357-358, May.
    13. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    14. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    15. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    16. Qi, Tianyu & Weng, Yuyan, 2016. "Economic impacts of an international carbon market in achieving the INDC targets," Energy, Elsevier, vol. 109(C), pages 886-893.
    17. Fragkos, Panagiotis & Fragkiadakis, Kostas & Paroussos, Leonidas & Pierfederici, Roberta & Vishwanathan, Saritha S. & Köberle, Alexandre C. & Iyer, Gokul & He, Chen-Min & Oshiro, Ken, 2018. "Coupling national and global models to explore policy impacts of NDCs," Energy Policy, Elsevier, vol. 118(C), pages 462-473.
    18. Niklas Höhne & Hanna Fekete & Michel G.J. den Elzen & Andries F. Hof & Takeshi Kuramochi, 2018. "Assessing the ambition of post-2020 climate targets: a comprehensive framework," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 425-441, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
    3. Marcucci, Adriana & Panos, Evangelos & Kypreos, Socrates & Fragkos, Panagiotis, 2019. "Probabilistic assessment of realizing the 1.5 °C climate target," Applied Energy, Elsevier, vol. 239(C), pages 239-251.
    4. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2021. "Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Silva Ortiz, Pablo & Flórez-Orrego, Daniel & de Oliveira Junior, Silvio & Maciel Filho, Rubens & Osseweijer, Patricia & Posada, John, 2020. "Unit exergy cost and specific CO2 emissions of the electricity generation in the Netherlands," Energy, Elsevier, vol. 208(C).
    6. Gupta, Dipti & Ghersi, Frédéric & Vishwanathan, Saritha S. & Garg, Amit, 2019. "Achieving sustainable development in India along low carbon pathways: Macroeconomic assessment," World Development, Elsevier, vol. 123(C), pages 1-1.
    7. Georgescu, Irina Alexandra & Oprea, Simona-Vasilica & Bâra, Adela, 2024. "Investigating the relationship between macroeconomic indicators, renewables and pollution across diverse regions in the globalization era," Applied Energy, Elsevier, vol. 363(C).
    8. Fragkos, Panagiotis & Laura van Soest, Heleen & Schaeffer, Roberto & Reedman, Luke & Köberle, Alexandre C. & Macaluso, Nick & Evangelopoulou, Stavroula & De Vita, Alessia & Sha, Fu & Qimin, Chai & Kej, 2021. "Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States," Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dioha, Michael O. & Kumar, Atul, 2020. "Exploring the energy system impacts of Nigeria's Nationally Determined Contributions and low-carbon transition to mid-century," Energy Policy, Elsevier, vol. 144(C).
    2. Fragkos, Panagiotis & Fragkiadakis, Kostas & Paroussos, Leonidas & Pierfederici, Roberta & Vishwanathan, Saritha S. & Köberle, Alexandre C. & Iyer, Gokul & He, Chen-Min & Oshiro, Ken, 2018. "Coupling national and global models to explore policy impacts of NDCs," Energy Policy, Elsevier, vol. 118(C), pages 462-473.
    3. den Elzen, Michel & Kuramochi, Takeshi & Höhne, Niklas & Cantzler, Jasmin & Esmeijer, Kendall & Fekete, Hanna & Fransen, Taryn & Keramidas, Kimon & Roelfsema, Mark & Sha, Fu & van Soest, Heleen & Vand, 2019. "Are the G20 economies making enough progress to meet their NDC targets?," Energy Policy, Elsevier, vol. 126(C), pages 238-250.
    4. Fragkos, Panagiotis & Laura van Soest, Heleen & Schaeffer, Roberto & Reedman, Luke & Köberle, Alexandre C. & Macaluso, Nick & Evangelopoulou, Stavroula & De Vita, Alessia & Sha, Fu & Qimin, Chai & Kej, 2021. "Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States," Energy, Elsevier, vol. 216(C).
    5. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    6. Kostas Fragkiadakis & Ioannis Charalampidis & Panagiotis Fragkos & Leonidas Paroussos, 2020. "Economic, Trade and Employment Implications from EVs Deployment and Policies to Support Domestic Battery Manufacturing in the EU," Foreign Trade Review, , vol. 55(3), pages 298-319, August.
    7. Jing Wu & Guan Kaixuan & Qianting Zhu & Wang Zheng & Yuanhua Chang & Xiong Wen, 2019. "An Analysis of the Emission Reduction Targets of “Belt and Road” Countries Based on Their NDC Reports," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    8. Senshaw, Dereje Azemraw & Kim, Jeong Won, 2018. "Meeting conditional targets in nationally determined contributions of developing countries: Renewable energy targets and required investment of GGGI member and partner countries," Energy Policy, Elsevier, vol. 116(C), pages 433-443.
    9. Siriwardana, Mahinda & Nong, Duy, 2021. "Nationally Determined Contributions (NDCs) to decarbonise the world: A transitional impact evaluation," Energy Economics, Elsevier, vol. 97(C).
    10. Kostas Fragkiadakis & Panagiotis Fragkos & Leonidas Paroussos, 2020. "Low-Carbon R&D Can Boost EU Growth and Competitiveness," Energies, MDPI, vol. 13(19), pages 1-29, October.
    11. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    12. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.
    13. Luís M. Fazendeiro & Sofia G. Simões, 2021. "Historical Variation of IEA Energy and CO 2 Emission Projections: Implications for Future Energy Modeling," Sustainability, MDPI, vol. 13(13), pages 1-27, July.
    14. Johannes Emmerling & Massimo Tavoni, 2018. "Climate Engineering and Abatement: A ‘flat’ Relationship Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 395-415, February.
    15. Zhang, Qingyong & Mao, Xianqiang & Lu, Jianhong & Guo, Zhi & Duman, Zaenhaer & Chen, Yongpeng & Song, Peng & Tu, Kevin, 2024. "EU-Russia energy decoupling in combination with the updated NDCs impacts on global fossil energy trade and carbon emissions," Applied Energy, Elsevier, vol. 356(C).
    16. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    17. Erica L. Plambeck, 2013. "OM Forum —Operations Management Challenges for Some “Cleantech” Firms," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 527-536, October.
    18. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    19. Goh, Tian & Ang, B.W., 2018. "Quantifying CO2 emission reductions from renewables and nuclear energy – Some paradoxes," Energy Policy, Elsevier, vol. 113(C), pages 651-662.
    20. Böhringer, Christoph & Peterson, Sonja & Rutherford, Thomas F. & Schneider, Jan & Winkler, Malte, 2021. "Climate policies after Paris: Pledge, Trade and Recycle," Energy Economics, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:965-978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.