Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2020.110374
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
- Wang, Ning & Ren, Yixin & Zhu, Tao & Meng, Fanxin & Wen, Zongguo & Liu, Gengyuan, 2018. "Life cycle carbon emission modelling of coal-fired power: Chinese case," Energy, Elsevier, vol. 162(C), pages 841-852.
- Shang, Yizi & Lu, Shibao & Li, Xiaofei & Hei, Pengfei & Lei, Xiaohui & Gong, Jiaguo & Liu, Jiahong & Zhai, Jiaqi & Wang, Hao, 2017. "Balancing development of major coal bases with available water resources in China through 2020," Applied Energy, Elsevier, vol. 194(C), pages 735-750.
- Lim-Wavde, Kustini & Zhai, Haibo & Kauffman, Robert J. & Rubin, Edward S., 2018. "Assessing carbon pollution standards: Electric power generation pathways and their water impacts," Energy Policy, Elsevier, vol. 120(C), pages 714-733.
- Costa, Isabella & Rochedo, Pedro & Costa, Daniele & Ferreira, Paula & Araújo, Madalena & Schaeffer, Roberto & Szklo, Alexandre, 2019. "Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula," Applied Energy, Elsevier, vol. 236(C), pages 22-31.
- Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
- Fthenakis, Vasilis & Kim, Hyung Chul, 2010. "Life-cycle uses of water in U.S. electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2039-2048, September.
- Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Chao Zhang & Lijin Zhong & Jiao Wang, 2018. "Decoupling between water use and thermoelectric power generation growth in China," Nature Energy, Nature, vol. 3(9), pages 792-799, September.
- Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
- Gu, Alun & Teng, Fei & Lv, Zhiqiang, 2016. "Exploring the nexus between water saving and energy conservation: Insights from industry sector during the 12th Five-Year Plan period in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 28-38.
- Khan, Zarrar & Linares, Pedro & Rutten, Martine & Parkinson, Simon & Johnson, Nils & García-González, Javier, 2018. "Spatial and temporal synchronization of water and energy systems: Towards a single integrated optimization model for long-term resource planning," Applied Energy, Elsevier, vol. 210(C), pages 499-517.
- Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Ayoub, Ali & Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Cooling towers performance in a changing climate: Techno-economic modeling and design optimization," Energy, Elsevier, vol. 160(C), pages 1133-1143.
- Oglend, Atle & Kleppe, Tore Selland & Osmundsen, Petter, 2016. "Trade with endogenous transportation costs: The case of liquefied natural gas," Energy Economics, Elsevier, vol. 59(C), pages 138-148.
- Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
- Bolorinos, Jose & Yu, Yang & Ajami, Newsha K. & Rajagopal, Ram, 2018. "Balancing marine ecosystem impact and freshwater consumption with water-use fees in California’s power markets: An evaluation of possibilities and trade-offs," Applied Energy, Elsevier, vol. 226(C), pages 644-654.
- Nouri, Narjes & Balali, Farhad & Nasiri, Adel & Seifoddini, Hamid & Otieno, Wilkistar, 2019. "Water withdrawal and consumption reduction for electrical energy generation systems," Applied Energy, Elsevier, vol. 248(C), pages 196-206.
- Choi, Sung & Park, Jungjoon & Kang, Yong Tae, 2019. "Experimental investigation on CO2 hydrate formation/dissociation for cold thermal energy harvest and transportation applications," Applied Energy, Elsevier, vol. 242(C), pages 1358-1368.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sammarchi, Sergio & Li, Jia & Izikowitz, David & Yang, Qiang & Xu, Dong, 2022. "China’s coal power decarbonization via CO2 capture and storage and biomass co-firing: A LCA case study in Inner Mongolia," Energy, Elsevier, vol. 261(PA).
- Huang, Qingxi & Yao, Jinduo & Hu, Yukun & Liu, Shengchun & Li, Hailong & Sun, Qie, 2022. "Integrating compressed CO2 energy storage in an oxy-coal combustion power plant with CO2 capture," Energy, Elsevier, vol. 254(PC).
- Zhang, Xiong & Liu, Wei & Chen, Jie & Jiang, Deyi & Fan, Jinyang & Daemen, J.J.K. & Qiao, Weibiao, 2022. "Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability," Energy, Elsevier, vol. 249(C).
- Wang, Yihan & Wen, Zongguo & Xu, Mao & Kosajan, Vorada, 2024. "The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry," Applied Energy, Elsevier, vol. 362(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
- Wu, Zitao & Zhai, Haibo, 2021. "Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration," Applied Energy, Elsevier, vol. 303(C).
- Fan, Jing-Li & Kong, Ling-Si & Zhang, Xian, 2018. "Synergetic effects of water and climate policy on energy-water nexus in China: A computable general equilibrium analysis," Energy Policy, Elsevier, vol. 123(C), pages 308-317.
- Guerras, Lidia S. & Martín, Mariano, 2020. "On the water footprint in power production: Sustainable design of wet cooling towers," Applied Energy, Elsevier, vol. 263(C).
- Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
- Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
- Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
- Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
- Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
- Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
- Zhu, Yongnan & Ke, Jing & Wang, Jianhua & Liu, He & Jiang, Shan & Blum, Helcio & Zhao, Yong & He, Guohua & Meng, Yuan & Su, Jian, 2020. "Water transfer and losses embodied in the West–East electricity transmission project in China," Applied Energy, Elsevier, vol. 275(C).
- Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
- Meleesa Naughton & Richard C. Darton & Fai Fung, 2012. "Could Climate Change Limit Water Availability for Coal-Fired Electricity Generation with Carbon Capture and Storage? A UK Case Study," Energy & Environment, , vol. 23(2-3), pages 265-282, May.
- Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
- Wiser, Ryan & Bolinger, Mark & Heath, Garvin & Keyser, David & Lantz, Eric & Macknick, Jordan & Mai, Trieu & Millstein, Dev, 2016. "Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts," Applied Energy, Elsevier, vol. 179(C), pages 146-158.
- Ji, Ling & Zhang, Beibei & Huang, Guohe & Wang, Peng, 2020. "A novel multi-stage fuzzy stochastic programming for electricity system structure optimization and planning with energy-water nexus - A case study of Tianjin, China," Energy, Elsevier, vol. 190(C).
- Li, Haoran & Cui, Xueqin & Hui, Jingxuan & He, Gang & Weng, Yuwei & Nie, Yaoyu & Wang, Can & Cai, Wenjia, 2021. "Catchment-level water stress risk of coal power transition in China under 2℃/1.5℃ targets," Applied Energy, Elsevier, vol. 294(C).
- Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
More about this item
Keywords
Carbon capture and storage; Water withdrawal; Water consumption; CO2-Enhanced water recovery; Full life cycle;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306626. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.