Electrical power generation under policy constrained water-energy nexus
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.09.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
- Tidwell, Vincent C. & Macknick, Jordan & Zemlick, Katie & Sanchez, Jasmine & Woldeyesus, Tibebe, 2014. "Transitioning to zero freshwater withdrawal in the U.S. for thermoelectric generation," Applied Energy, Elsevier, vol. 131(C), pages 508-516.
- Christoph Schär & Pier Luigi Vidale & Daniel Lüthi & Christoph Frei & Christian Häberli & Mark A. Liniger & Christof Appenzeller, 2004. "The role of increasing temperature variability in European summer heatwaves," Nature, Nature, vol. 427(6972), pages 332-336, January.
- Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
- DeNooyer, Tyler A. & Peschel, Joshua M. & Zhang, Zhenxing & Stillwell, Ashlynn S., 2016. "Integrating water resources and power generation: The energy–water nexus in Illinois," Applied Energy, Elsevier, vol. 162(C), pages 363-371.
- Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
- Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
- Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
- Zheng, Xinzhu & Wang, Can & Cai, Wenjia & Kummu, Matti & Varis, Olli, 2016. "The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change," Applied Energy, Elsevier, vol. 171(C), pages 444-455.
- Declan Conway & Emma Archer van Garderen & Delphine Deryng & Steve Dorling & Tobias Krueger & Willem Landman & Bruce Lankford & Karen Lebek & Tim Osborn & Claudia Ringler & James Thurlow & Tingju Zhu , 2015.
"Climate and southern Africa's water–energy–food nexus,"
Nature Climate Change, Nature, vol. 5(9), pages 837-846, September.
- Conway, Declan & Archer van Garderen, Emma & Deryng, Delphine & Dorling, Steve & Krueger, Tobias & Landman, Willem & Lankford, Bruce & Lebek, Karen & Osborn, Tim & Ringler, Claudia & Thurlow, James & , 2015. "Climate and southern Africa's water–energy–food nexus," LSE Research Online Documents on Economics 63308, London School of Economics and Political Science, LSE Library.
- Michelle T. H. van Vliet & John R. Yearsley & Fulco Ludwig & Stefan Vögele & Dennis P. Lettenmaier & Pavel Kabat, 2012. "Vulnerability of US and European electricity supply to climate change," Nature Climate Change, Nature, vol. 2(9), pages 676-681, September.
- Ackerman, Frank & Fisher, Jeremy, 2013. "Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States," Energy Policy, Elsevier, vol. 59(C), pages 235-241.
- Matthew D. Bartos & Mikhail V. Chester, 2015. "Impacts of climate change on electric power supply in the Western United States," Nature Climate Change, Nature, vol. 5(8), pages 748-752, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
- Zhou, Nan & Zhang, Jingjing & Khanna, Nina & Fridley, David & Jiang, Shan & Liu, Xu, 2019. "Intertwined impacts of water, energy development, and carbon emissions in China," Applied Energy, Elsevier, vol. 238(C), pages 78-91.
- Micari, M. & Cipollina, A. & Tamburini, A. & Moser, M. & Bertsch, V. & Micale, G., 2019. "Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine," Applied Energy, Elsevier, vol. 254(C).
- Wang, Wei & Jing, Rui & Zhao, Yingru & Zhang, Chuan & Wang, Xiaonan, 2020. "A load-complementarity combined flexible clustering approach for large-scale urban energy-water nexus optimization," Applied Energy, Elsevier, vol. 270(C).
- Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
- Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Guerras, Lidia S. & Martín, Mariano, 2020. "On the water footprint in power production: Sustainable design of wet cooling towers," Applied Energy, Elsevier, vol. 263(C).
- Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).
- Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
- Lv, J. & Li, Y.P. & Shan, B.G. & Jin, S.W. & Suo, C., 2018. "Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province," Applied Energy, Elsevier, vol. 229(C), pages 389-403.
- Wörman, Anders & Uvo, Cintia Bertacchi & Brandimarte, Luigia & Busse, Stefan & Crochemore, Louise & Lopez, Marc Girons & Hao, Shuang & Pechlivanidis, Ilias & Riml, Joakim, 2020. "Virtual energy storage gain resulting from the spatio-temporal coordination of hydropower over Europe," Applied Energy, Elsevier, vol. 272(C).
- Jabari, Farkhondeh & Jabari, Hamid & Mohammadi-ivatloo, Behnam & Ghafouri, Jafar, 2019. "Optimal short-term coordination of water-heat-power nexus incorporating plug-in electric vehicles and real-time demand response programs," Energy, Elsevier, vol. 174(C), pages 708-723.
- Yang, Qing & Huang, Tianyue & Chen, Fuying & Uche, Javier & Wang, Yuxuan & Yuan, Peng & Zhang, Yinya & Li, Jianlan, 2022. "Water saving potential for large-scale photovoltaic power generation in China: Based on life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Payet-Burin, Raphael & Bertoni, Federica & Davidsen, Claus & Bauer-Gottwein, Peter, 2018. "Optimization of regional water - power systems under cooling constraints and climate change," Energy, Elsevier, vol. 155(C), pages 484-494.
- Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).
- Obringer, R. & Kumar, R. & Nateghi, R., 2019. "Analyzing the climate sensitivity of the coupled water-electricity demand nexus in the Midwestern United States," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott, 2018. "Assessing future water resource constraints on thermally based renewable energy resources in California," Applied Energy, Elsevier, vol. 226(C), pages 49-60.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
- Srinivasan, Shweta & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Mathur, Ritu & Clarke, Leon & Evans, Meredydd & Hejazi, Mohamad & Kanudia, Amit & Koti, Poonam Nagar & Liu, Bo & Parik, 2018. "Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation," Applied Energy, Elsevier, vol. 210(C), pages 673-684.
- Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
- Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
- Kahsar, Rudy, 2020. "The potential for brackish water use in thermoelectric power generation in the American southwest," Energy Policy, Elsevier, vol. 137(C).
- Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
- Pengbang Wei & Yufang Peng & Weidong Chen, 2022. "Climate change adaptation mechanisms and strategies of coal-fired power plants," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
- Klimenko, V.V. & Fedotova, E.V. & Tereshin, A.G., 2018. "Vulnerability of the Russian power industry to the climate change," Energy, Elsevier, vol. 142(C), pages 1010-1022.
- Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
- Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
- O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
- Hashemi, Seyed Mohsen & Tabarzadi, Mahdi & Fallahi, Farhad & Rostam Niakan Kalhori, Masoumeh & Abdollahzadeh, Davood & Qadrdan, Meysam, 2024. "Water and emission constrained generation expansion planning for Iran power system," Energy, Elsevier, vol. 288(C).
- Qian Zhou & Naota Hanasaki & Shinichiro Fujimori, 2018. "Economic Consequences of Cooling Water Insufficiency in the Thermal Power Sector under Climate Change Scenarios," Energies, MDPI, vol. 11(10), pages 1-11, October.
- Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
- Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
- Craig, Christopher A. & Feng, Song, 2016. "An examination of electricity generation by utility organizations in the Southeast United States," Energy, Elsevier, vol. 116(P1), pages 601-608.
- Huang, Xiaojian & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying & María Ponce-Ortega, José & El-Halwagi, Mahmoud M., 2018. "Synthesis and dual-objective optimization of industrial combined heat and power plants compromising the water–energy nexus," Applied Energy, Elsevier, vol. 224(C), pages 448-468.
- Huan-Feng Duan & Xichao Gao, 2019. "Flooding Control and Hydro-Energy Assessment for Urban Stormwater Drainage Systems under Climate Change: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3523-3545, August.
- Tidwell, Vincent C. & Gunda, Thushara & Gayoso, Natalie, 2021. "Plant-level characteristics could aid in the assessment of water-related threats to the electric power sector," Applied Energy, Elsevier, vol. 282(PA).
- Yang, Xuechun & Wang, Yutao & Sun, Mingxing & Wang, Renqing & Zheng, Peiming, 2018. "Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 228(C), pages 2298-2307.
More about this item
Keywords
Water-energy nexus; Water policy; Once-trough cooling; Wet tower cooling; Power generation; Drought;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:568-579. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.