IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp172-183.html
   My bibliography  Save this article

Energy efficiency evaluation for machining systems through virtual part

Author

Listed:
  • Tuo, Junbo
  • Liu, Fei
  • Liu, Peiji
  • Zhang, Hua
  • Cai, Wei

Abstract

Energy prices, environmental concerns, carbon dioxide emissions, and economic matters are driving factors for research on reducing machining system energy consumption. Energy efficiency evaluation for machining systems is an effective management strategy for reducing the energy consumption and improving the energy efficiency of machining systems. This paper proposes a methodology called virtual part method to evaluate the energy efficiency of machining systems, and the proposed method overcomes the deficiencies or limitations of major existing methods (such as the entitative part method) through equivalence and virtualization of all possible machining system parts that may be manufactured in future. Based on an analysis of the energy compositions and characteristics of the proposed virtual part, an energy efficiency evaluation for machining systems through virtual part is conducted in three steps: 1) selection of evaluation indexes; 2) corresponding data collection for calculating indexes; and 3) development of energy efficiency evaluation system. Its application in a machine tool suggests that the proposed method is more accurate than the existing ones and contributes to energy-saving activities including the development of energy efficiency standards, design of energy-efficient machining systems, and reform of old machining systems.

Suggested Citation

  • Tuo, Junbo & Liu, Fei & Liu, Peiji & Zhang, Hua & Cai, Wei, 2018. "Energy efficiency evaluation for machining systems through virtual part," Energy, Elsevier, vol. 159(C), pages 172-183.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:172-183
    DOI: 10.1016/j.energy.2018.06.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    2. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    3. Olivo, Y. & Hamidi, A. & Ramamurthy, P., 2017. "Spatiotemporal variability in building energy use in New York City," Energy, Elsevier, vol. 141(C), pages 1393-1401.
    4. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    5. Schudeleit, Timo & Züst, Simon & Weiss, Lukas & Wegener, Konrad, 2016. "The Total Energy Efficiency Index for machine tools," Energy, Elsevier, vol. 102(C), pages 682-693.
    6. Zhao, G.Y. & Liu, Z.Y. & He, Y. & Cao, H.J. & Guo, Y.B., 2017. "Energy consumption in machining: Classification, prediction, and reduction strategy," Energy, Elsevier, vol. 133(C), pages 142-157.
    7. Pao, Hsiao-Tien & Chen, Haipeng (Allan) & Li, Yi-Ying, 2015. "Competitive dynamics of energy, environment, and economy in the U.S," Energy, Elsevier, vol. 89(C), pages 449-460.
    8. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    9. Fan, Junming & Hong, Hui & Zhu, Lin & Jiang, Qiongqiong & Jin, Hongguang, 2017. "Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 195(C), pages 861-876.
    10. Zhang, Yanfeng & Jiang, Chen & Shou, Binan & Zhou, Wenxue & Zhang, Zhifeng & Wang, Shuang & Bai, Bofeng, 2018. "A quantitative energy efficiency evaluation and grading of plate heat exchangers," Energy, Elsevier, vol. 142(C), pages 228-233.
    11. Liu, Peiji & Liu, Fei & Qiu, Hang, 2017. "A novel approach for acquiring the real-time energy efficiency of machine tools," Energy, Elsevier, vol. 121(C), pages 524-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Qinge & Li, Congbo & Tang, Ying & Li, Lingling & Li, Li, 2019. "A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning," Energy, Elsevier, vol. 166(C), pages 142-156.
    2. Zhaohui Feng & Xinru Ding & Hua Zhang & Ying Liu & Wei Yan & Xiaoli Jiang, 2023. "An Energy Consumption Estimation Method for the Tool Setting Process in CNC Milling Based on the Modular Arrangement of Predetermined Time Standards," Energies, MDPI, vol. 16(20), pages 1-18, October.
    3. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    4. Jia, Shun & Cai, Wei & Liu, Conghu & Zhang, Zhongwei & Bai, Shuowei & Wang, Qiuyan & Li, Shuoshuo & Hu, Luoke, 2021. "Energy modeling and visualization analysis method of drilling processes in the manufacturing industry," Energy, Elsevier, vol. 228(C).
    5. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Qinge & Li, Congbo & Tang, Ying & Pan, Jian & Yu, Jun & Chen, Xingzheng, 2019. "Multi-component energy modeling and optimization for sustainable dry gear hobbing," Energy, Elsevier, vol. 187(C).
    2. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    3. Benjie Li & Hualin Zheng & Xiao Yang & Liang Guo & Binglin Li, 2020. "Energy Optimization for Motorized Spindle System of Machine Tools under Minimum Thermal Effects and Maximum Productivity Constraints," Energies, MDPI, vol. 13(22), pages 1-17, November.
    4. Hu, Luoke & Liu, Ying & Peng, Chen & Tang, Wangchujun & Tang, Renzhong & Tiwari, Ashutosh, 2018. "Minimising the energy consumption of tool change and tool path of machining by sequencing the features," Energy, Elsevier, vol. 147(C), pages 390-402.
    5. Cai, Wei & Li, Yanqi & Li, Li & Lai, Kee-hung & Jia, Shun & Xie, Jun & Zhang, Yuanhui & Hu, Luoke, 2022. "Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: Energy modeling and application," Energy, Elsevier, vol. 252(C).
    6. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).
    7. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    8. Shang, Zhendong & Gao, Dong & Jiang, Zhipeng & Lu, Yong, 2019. "Towards less energy intensive heavy-duty machine tools: Power consumption characteristics and energy-saving strategies," Energy, Elsevier, vol. 178(C), pages 263-276.
    9. Tangbin Xia & Xiangxin An & Huaqiang Yang & Yimin Jiang & Yuhui Xu & Meimei Zheng & Ershun Pan, 2023. "Efficient Energy Use in Manufacturing Systems—Modeling, Assessment, and Management Strategy," Energies, MDPI, vol. 16(3), pages 1-20, January.
    10. Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
    11. Xiao, Qinge & Li, Congbo & Tang, Ying & Li, Lingling & Li, Li, 2019. "A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning," Energy, Elsevier, vol. 166(C), pages 142-156.
    12. Cai, Wei & Lai, Kee-hung, 2021. "Sustainability assessment of mechanical manufacturing systems in the industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Gokan May & Foivos Psarommatis, 2023. "Maximizing Energy Efficiency in Additive Manufacturing: A Review and Framework for Future Research," Energies, MDPI, vol. 16(10), pages 1-28, May.
    14. Zhang, Yuanhui & Cai, Wei & He, Yan & Peng, Tao & Jia, Shun & Lai, Kee-hung & Li, Li, 2022. "Forward-and-reverse multidirectional turning: A novel material removal approach for improving energy efficiency, processing efficiency and quality," Energy, Elsevier, vol. 260(C).
    15. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    16. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    17. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    18. Velasco-Fernández, Raúl & Giampietro, Mario & Bukkens, Sandra G.F., 2018. "Analyzing the energy performance of manufacturing across levels using the end-use matrix," Energy, Elsevier, vol. 161(C), pages 559-572.
    19. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    20. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:172-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.