IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics0360544221008161.html
   My bibliography  Save this article

Energy modeling and visualization analysis method of drilling processes in the manufacturing industry

Author

Listed:
  • Jia, Shun
  • Cai, Wei
  • Liu, Conghu
  • Zhang, Zhongwei
  • Bai, Shuowei
  • Wang, Qiuyan
  • Li, Shuoshuo
  • Hu, Luoke

Abstract

Energy modeling and visualization of machining have been recognized as effective and powerful ways to explore energy-saving potential and to improve energy efficiency. However, energy modeling and visualization of the drilling process have not been investigated adequately. To address this challenge, sub-power models-based energy modeling and multi-angle energy visualization analysis methods of drilling process were proposed in this study. More specifically, three tasks were carried out: (1) detailed sub-power models of drilling were established; (2) sub-power models-based energy modeling method of drilling was proposed; (3) based on the detailed sub-power models and energy data, multi-angle energy visualization analysis was conducted. Application of the proposed drilling energy model in common drilling processes indicated that its average prediction accuracy of the proposed drilling energy model was 96.2%. The results also showed that 7417.8 J energy saving and 12.6% energy efficiency improvement were achieved with the visualization analysis. The proposed method contributed to energy-saving activities for the drilling process, including providing high accuracy energy model, analyzing energy saving potential and improving energy efficiency. We believe that the outcomes of this research can help engineers and managers to better understand and manage the energy characteristics of drilling.

Suggested Citation

  • Jia, Shun & Cai, Wei & Liu, Conghu & Zhang, Zhongwei & Bai, Shuowei & Wang, Qiuyan & Li, Shuoshuo & Hu, Luoke, 2021. "Energy modeling and visualization analysis method of drilling processes in the manufacturing industry," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008161
    DOI: 10.1016/j.energy.2021.120567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221008161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Qinge & Li, Congbo & Tang, Ying & Li, Lingling & Li, Li, 2019. "A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning," Energy, Elsevier, vol. 166(C), pages 142-156.
    2. Salahi, Niloofar & Jafari, Mohsen A., 2016. "Energy-Performance as a driver for optimal production planning," Applied Energy, Elsevier, vol. 174(C), pages 88-100.
    3. Reza Imani Asrai & Stephen T. Newman & Aydin Nassehi, 2018. "A mechanistic model of energy consumption in milling," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 642-659, January.
    4. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    5. Schudeleit, Timo & Züst, Simon & Weiss, Lukas & Wegener, Konrad, 2016. "The Total Energy Efficiency Index for machine tools," Energy, Elsevier, vol. 102(C), pages 682-693.
    6. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    7. Li, Yufeng & He, Yan & Wang, Yan & Wang, Yulin & Yan, Ping & Lin, Shenlong, 2015. "A modeling method for hybrid energy behaviors in flexible machining systems," Energy, Elsevier, vol. 86(C), pages 164-174.
    8. Tuo, Junbo & Liu, Fei & Liu, Peiji & Zhang, Hua & Cai, Wei, 2018. "Energy efficiency evaluation for machining systems through virtual part," Energy, Elsevier, vol. 159(C), pages 172-183.
    9. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    10. Schudeleit, Timo & Züst, Simon & Wegener, Konrad, 2015. "Methods for evaluation of energy efficiency of machine tools," Energy, Elsevier, vol. 93(P2), pages 1964-1970.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Yan & Jian Huang & Jingxiang Lv & Jizhuang Hui & Ying Liu & Hao Zhang & Enhuai Yin & Qingtao Liu, 2022. "A New Method of Predicting the Energy Consumption of Additive Manufacturing considering the Component Working State," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    2. Tatiana N. Ivanova & Witold Biały & Aleksander I. Korshunov & Jerzy Jura & Krzysztof Kaczmarczyk & Krzysztof Turczyński, 2022. "Increasing Energy Efficiency in Well Drilling," Energies, MDPI, vol. 15(5), pages 1-16, March.
    3. Shun Jia & Shang Wang & Jingxiang Lv & Wei Cai & Na Zhang & Zhongwei Zhang & Shuowei Bai, 2021. "Multi-Objective Optimization of CNC Turning Process Parameters Considering Transient-Steady State Energy Consumption," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    4. Shuai Wang & Jizhuang Hui & Bin Zhu & Ying Liu, 2022. "Adaptive Genetic Algorithm Based on Fuzzy Reasoning for the Multilevel Capacitated Lot-Sizing Problem with Energy Consumption in Synchronizer Production," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    5. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).
    6. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    2. Zhaohui Feng & Xinru Ding & Hua Zhang & Ying Liu & Wei Yan & Xiaoli Jiang, 2023. "An Energy Consumption Estimation Method for the Tool Setting Process in CNC Milling Based on the Modular Arrangement of Predetermined Time Standards," Energies, MDPI, vol. 16(20), pages 1-18, October.
    3. Xiao, Qinge & Li, Congbo & Tang, Ying & Li, Lingling & Li, Li, 2019. "A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning," Energy, Elsevier, vol. 166(C), pages 142-156.
    4. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    5. Zhang, Liping & Tang, Qiuhua & Wu, Zhengjia & Wang, Fang, 2017. "Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops," Energy, Elsevier, vol. 138(C), pages 210-227.
    6. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).
    7. Hu, Luoke & Peng, Chen & Evans, Steve & Peng, Tao & Liu, Ying & Tang, Renzhong & Tiwari, Ashutosh, 2017. "Minimising the machining energy consumption of a machine tool by sequencing the features of a part," Energy, Elsevier, vol. 121(C), pages 292-305.
    8. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    9. Xiao, Qinge & Li, Congbo & Tang, Ying & Pan, Jian & Yu, Jun & Chen, Xingzheng, 2019. "Multi-component energy modeling and optimization for sustainable dry gear hobbing," Energy, Elsevier, vol. 187(C).
    10. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    11. Tangbin Xia & Xiangxin An & Huaqiang Yang & Yimin Jiang & Yuhui Xu & Meimei Zheng & Ershun Pan, 2023. "Efficient Energy Use in Manufacturing Systems—Modeling, Assessment, and Management Strategy," Energies, MDPI, vol. 16(3), pages 1-20, January.
    12. Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
    13. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    14. Shang, Zhendong & Gao, Dong & Jiang, Zhipeng & Lu, Yong, 2021. "A multi-perspective analysis of sustainability of machining processes based on a new extended virtual manufacturing framework," Energy, Elsevier, vol. 225(C).
    15. Wen, Xuanhao & Cao, Huajun & Hon, Bernard & Chen, Erheng & Li, Hongcheng, 2021. "Energy value mapping: A novel lean method to integrate energy efficiency into production management," Energy, Elsevier, vol. 217(C).
    16. Cai, Wei & Wang, Lianguo & Li, Li & Xie, Jun & Jia, Shun & Zhang, Xugang & Jiang, Zhigang & Lai, Kee-hung, 2022. "A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Cai, Wei & Li, Yanqi & Li, Li & Lai, Kee-hung & Jia, Shun & Xie, Jun & Zhang, Yuanhui & Hu, Luoke, 2022. "Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: Energy modeling and application," Energy, Elsevier, vol. 252(C).
    18. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    19. Murat Gunduz & Ayman Fahmi Naser, 2017. "Cost Based Value Stream Mapping as a Sustainable Construction Tool for Underground Pipeline Construction Projects," Sustainability, MDPI, vol. 9(12), pages 1-20, November.
    20. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.