IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222020552.html
   My bibliography  Save this article

Forward-and-reverse multidirectional turning: A novel material removal approach for improving energy efficiency, processing efficiency and quality

Author

Listed:
  • Zhang, Yuanhui
  • Cai, Wei
  • He, Yan
  • Peng, Tao
  • Jia, Shun
  • Lai, Kee-hung
  • Li, Li

Abstract

To address the issue of high energy consumption and low utilization rate in conventional turning, a concept of forward-and-reverse multidirectional turning (MDT) and the MDT approach are proposed to reduce energy consumption in idling and to improve processing efficiency and surface quality. The material removal performance of the MDT from aspects of energy consumption, processing efficiency, chip morphology and surface quality is discussed to understand its features and advantages compared with unidirectional turning (UDT). In three application scenarios, the processing efficiency is increased by 6.40%, 8.45%, and 7.76%, and energy consumption is reduced by 10.88%, 7.25%, and 9.52%, using the MDT, respectively. Additionally, the MDT has better control ability of the chip removal, benefitting for improving the processing stability. The surface quality of the workpiece processed by the MDT is generally better than that by UDT. This study provides a novel high performance processing approach for the machining,which contributes to promoting the efficient and high-quality development of mechanical manufacturing industry.

Suggested Citation

  • Zhang, Yuanhui & Cai, Wei & He, Yan & Peng, Tao & Jia, Shun & Lai, Kee-hung & Li, Li, 2022. "Forward-and-reverse multidirectional turning: A novel material removal approach for improving energy efficiency, processing efficiency and quality," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020552
    DOI: 10.1016/j.energy.2022.125162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222020552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying CAO & Xiaomei Li & Haoben YAN & Shuya KUANG, 2021. "China’s Efforts to Peak Carbon Emissions: Targets and Practice," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-14, March.
    2. Hu, Luoke & Liu, Ying & Lohse, Niels & Tang, Renzhong & Lv, Jingxiang & Peng, Chen & Evans, Steve, 2017. "Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed," Energy, Elsevier, vol. 139(C), pages 935-946.
    3. Cai, Wei & Li, Yanqi & Li, Li & Lai, Kee-hung & Jia, Shun & Xie, Jun & Zhang, Yuanhui & Hu, Luoke, 2022. "Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: Energy modeling and application," Energy, Elsevier, vol. 252(C).
    4. Zhao, G.Y. & Liu, Z.Y. & He, Y. & Cao, H.J. & Guo, Y.B., 2017. "Energy consumption in machining: Classification, prediction, and reduction strategy," Energy, Elsevier, vol. 133(C), pages 142-157.
    5. Xiaona Luan & Song Zhang & Jie Chen & Gang Li, 2019. "Energy modelling and energy saving strategy analysis of a machine tool during non-cutting status," International Journal of Production Research, Taylor & Francis Journals, vol. 57(14), pages 4451-4467, July.
    6. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    7. Chen, Xingzheng & Li, Congbo & Tang, Ying & Li, Li & Du, Yanbin & Li, Lingling, 2019. "Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time," Energy, Elsevier, vol. 175(C), pages 1021-1037.
    8. Seung-Jun Shin & Jungyub Woo & Sudarsan Rachuri & Prita Meilanitasari, 2018. "Standard Data-Based Predictive Modeling for Power Consumption in Turning Machining," Sustainability, MDPI, vol. 10(3), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yanqi & Chen, Junming & Wang, Yu & Li, Shunjiang & Duan, Xiangmin & Jiang, Zhigang & Lai, Kee-hung & Cai, Wei, 2024. "Multi-objective modeling and evaluation for energy saving and high efficiency production oriented multidirectional turning considering energy, efficiency, economy and quality," Energy, Elsevier, vol. 294(C).
    2. Zhang, Jiaqi & Han, Xin & Li, Li & Jia, Shun & Jiang, Zhigang & Duan, Xiangmin & Lai, Kee-hung & Cai, Wei, 2023. "Multi-objective optimisation for energy saving and high efficiency production oriented multidirectional turning based on improved fireworks algorithm considering energy, efficiency and quality," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiaqi & Han, Xin & Li, Li & Jia, Shun & Jiang, Zhigang & Duan, Xiangmin & Lai, Kee-hung & Cai, Wei, 2023. "Multi-objective optimisation for energy saving and high efficiency production oriented multidirectional turning based on improved fireworks algorithm considering energy, efficiency and quality," Energy, Elsevier, vol. 284(C).
    2. Tangbin Xia & Xiangxin An & Huaqiang Yang & Yimin Jiang & Yuhui Xu & Meimei Zheng & Ershun Pan, 2023. "Efficient Energy Use in Manufacturing Systems—Modeling, Assessment, and Management Strategy," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    4. Tuo, Junbo & Liu, Fei & Liu, Peiji & Zhang, Hua & Cai, Wei, 2018. "Energy efficiency evaluation for machining systems through virtual part," Energy, Elsevier, vol. 159(C), pages 172-183.
    5. Hu, Luoke & Liu, Ying & Peng, Chen & Tang, Wangchujun & Tang, Renzhong & Tiwari, Ashutosh, 2018. "Minimising the energy consumption of tool change and tool path of machining by sequencing the features," Energy, Elsevier, vol. 147(C), pages 390-402.
    6. Cai, Wei & Li, Yanqi & Li, Li & Lai, Kee-hung & Jia, Shun & Xie, Jun & Zhang, Yuanhui & Hu, Luoke, 2022. "Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: Energy modeling and application," Energy, Elsevier, vol. 252(C).
    7. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    8. Shailendra Pawanr & Kapil Gupta, 2024. "A Review on Recent Advances in the Energy Efficiency of Machining Processes for Sustainability," Energies, MDPI, vol. 17(15), pages 1-21, July.
    9. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    10. Xiao, Qinge & Li, Congbo & Tang, Ying & Pan, Jian & Yu, Jun & Chen, Xingzheng, 2019. "Multi-component energy modeling and optimization for sustainable dry gear hobbing," Energy, Elsevier, vol. 187(C).
    11. Silviu Răileanu & Theodor Borangiu & Ionuț Lențoiu & Mihnea Constantinescu, 2024. "Optimizing Energy Consumption of Industrial Robots with Model-Based Layout Design," Sustainability, MDPI, vol. 16(3), pages 1-20, January.
    12. Zhang, Tao & Liu, Zhanqiang & Sun, Xiaodong & Xu, Jixiang & Dong, Longlong & Zhu, Genglei, 2020. "Investigation on specific milling energy and energy efficiency in high-speed milling based on energy flow theory," Energy, Elsevier, vol. 192(C).
    13. Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
    14. Nan Wang & Quan Yang & Cuixia Zhang, 2022. "Data-Driven Low-Carbon Control Method of Machining Process—Taking Axle as an Example," Sustainability, MDPI, vol. 14(21), pages 1-10, October.
    15. Shang, Zhendong & Gao, Dong & Jiang, Zhipeng & Lu, Yong, 2019. "Towards less energy intensive heavy-duty machine tools: Power consumption characteristics and energy-saving strategies," Energy, Elsevier, vol. 178(C), pages 263-276.
    16. Sylwester Kaczmarzewski & Dominika Matuszewska & Maciej Sołtysik, 2021. "Analysis of Selected Service Industries in Terms of the Use of Photovoltaics before and during the COVID-19 Pandemic," Energies, MDPI, vol. 15(1), pages 1-24, December.
    17. Joanna Kossakowska & Sebastian Bombiński & Krzysztof Ejsmont, 2021. "Analysis of the Suitability of Signal Features for Individual Sensor Types in the Diagnosis of Gradual Tool Wear in Turning," Energies, MDPI, vol. 14(20), pages 1-23, October.
    18. Cai, Wei & Wang, Lianguo & Li, Li & Xie, Jun & Jia, Shun & Zhang, Xugang & Jiang, Zhigang & Lai, Kee-hung, 2022. "A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Benjie Li & Hualin Zheng & Xiao Yang & Liang Guo & Binglin Li, 2020. "Energy Optimization for Motorized Spindle System of Machine Tools under Minimum Thermal Effects and Maximum Productivity Constraints," Energies, MDPI, vol. 13(22), pages 1-17, November.
    20. Hadhami Ben Slama & Raoudha Gaha & Mehdi Tlija & Sami Chatti & Abdelmajid Benamara, 2023. "Proposal of a Combined AHP-PROMETHEE Decision Support Tool for Selecting Sustainable Machining Process Based on Toolpath Strategy and Manufacturing Parameters," Sustainability, MDPI, vol. 15(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.