IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics1364032120304603.html
   My bibliography  Save this article

Sustainability assessment of mechanical manufacturing systems in the industrial sector

Author

Listed:
  • Cai, Wei
  • Lai, Kee-hung

Abstract

Sustainability assessment is growingly recognized as an effective analytical methodology and management tool useful for managing and improving sustainability performance. In this study, a novel approach of sustainability benchmark assessment is presented to overcome the performance quantification and hierarchization deficiencies of current sustainability assessment methods. A conceptual model demonstrating how sustainability assessment of mechanical manufacturing systems in the industrial sector produces mutually beneficial energy, economy and environment outcomes that serve to reduce energy and cost demand and mitigate environmental challenges is illustrated. Through constructing the sustainability index system encompassing energy, economy and environment perspectives, the energy, economy and environment-oriented assessment models are presented. Furthermore, two concepts concerning sustainability benchmark and sustainability benchmark rating are proposed to benefit the sustainable performance quantification and hierarchization of mechanical manufacturing systems. This method based on sustainability benchmark assessment is applied to a small mechanical manufacturing enterprise in China through which users can visualize and identify sustainability performance for different mechanical manufacturing systems. This approach can offer the effective feedback for users to enhance process management and technical improvement (process optimization) and to reconsider the energy, economic, and environment in new production cycle, enabling sustainability continuous cycle improvement. This study contributes a new theoretical insight for sustainability assessment by offering relational ties with technical and managerial aspects in support of industrial sustainability.

Suggested Citation

  • Cai, Wei & Lai, Kee-hung, 2021. "Sustainability assessment of mechanical manufacturing systems in the industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120304603
    DOI: 10.1016/j.rser.2020.110169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    2. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    3. Balogun, Vincent Aizebeoje & Edem, Isuamfon F. & Gu, Heng & Mativenga, Paul Tarisai, 2018. "Energy centric selection of machining conditions for minimum cost," Energy, Elsevier, vol. 164(C), pages 655-663.
    4. Schudeleit, Timo & Züst, Simon & Weiss, Lukas & Wegener, Konrad, 2016. "The Total Energy Efficiency Index for machine tools," Energy, Elsevier, vol. 102(C), pages 682-693.
    5. Ma, Li & Zhai, Xin & Zhong, Weiguo & Zhang, Zhi-Xue, 2019. "Deploying human capital for innovation: A study of multi-country manufacturing firms," International Journal of Production Economics, Elsevier, vol. 208(C), pages 241-253.
    6. Luoke Hu & Renzhong Tang & Keyan He & Shun Jia, 2015. "Estimating machining-related energy consumption of parts at the design phase based on feature technology," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7016-7033, December.
    7. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    8. Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
    9. Luthra, Sunil & Mangla, Sachin Kumar & Kharb, Ravinder K., 2015. "Sustainable assessment in energy planning and management in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 58-73.
    10. Lu, Shyi-Min & Lu, Ching & Tseng, Kuo-Tung & Chen, Falin & Chen, Chen-Liang, 2013. "Energy-saving potential of the industrial sector of Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 674-683.
    11. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    12. Samarghandi, Hamed, 2017. "Studying the impact of merged and divided storage policies on the profitability of a remanufacturing system with deteriorating revenues," International Journal of Production Economics, Elsevier, vol. 193(C), pages 160-171.
    13. Song, Dan & Yang, Jin & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Life-cycle environmental impact analysis of a typical cement production chain," Applied Energy, Elsevier, vol. 164(C), pages 916-923.
    14. Kelle, Peter & Song, Jinglu & Jin, Mingzhou & Schneider, Helmut & Claypool, Christopher, 2019. "Evaluation of operational and environmental sustainability tradeoffs in multimodal freight transportation planning," International Journal of Production Economics, Elsevier, vol. 209(C), pages 411-420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sohail Ahmad Javeed & Boon Heng Teh & Tze San Ong & Nguyen Thi Phuong Lan & Saravanan Muthaiyah & Rashid Latief, 2023. "The Connection between Absorptive Capacity and Green Innovation: The Function of Board Capital and Environmental Regulation," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    2. Ali, Babkir & Hedayati-Dezfooli, M. & Gamil, Ahmed, 2023. "Sustainability assessment of alternative energy power generation pathways through the development of impact indicators for water, land, GHG emissions, and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Minjie Wang & Yuanbo Wu & Bin Wang, 2024. "Carbon Emission Accounting Model of Three-Stage Mechanical Products for Manufacturing Process," Sustainability, MDPI, vol. 16(18), pages 1-27, September.
    4. Fanyong Meng & Aiqing Zeng & Jie Tang & Witold Pedrycz, 2023. "Ranking Objects from Individual Linguistic Dual Hesitant Fuzzy Information in View of Optimal Model-Based Consistency and Consensus Iteration Algorithm," Group Decision and Negotiation, Springer, vol. 32(1), pages 5-44, February.
    5. Valerie M. Scharmer & Susanne Vernim & Julia Horsthofer-Rauch & Patrick Jordan & Maria Maier & Magdalena Paul & Daniel Schneider & Markus Woerle & Julia Schulz & Michael F. Zaeh, 2023. "Sustainable Manufacturing: A Review and Framework Derivation," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    6. Aldona Kluczek & Patrycja Żegleń & Daniela Matušíková, 2021. "The Use of Prospect Theory for Energy Sustainable Industry 4.0," Energies, MDPI, vol. 14(22), pages 1-29, November.
    7. Mohammed Saeed Al-Alqam & Ateekh Ur Rehman & Marwan Alsultan, 2023. "Sustainability Indexing Model for Saudi Manufacturing Organizations," Sustainability, MDPI, vol. 15(2), pages 1-25, January.
    8. Cai, Wei & Li, Yanqi & Li, Li & Lai, Kee-hung & Jia, Shun & Xie, Jun & Zhang, Yuanhui & Hu, Luoke, 2022. "Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: Energy modeling and application," Energy, Elsevier, vol. 252(C).
    9. María Carmen Carnero, 2020. "Fuzzy TOPSIS Model for Assessment of Environmental Sustainability: A Case Study with Patient Judgements," Mathematics, MDPI, vol. 8(11), pages 1-43, November.
    10. Sohail Ahmad Javeed & Boon Heng Teh & Tze San Ong & Lee Lee Chong & Mohd Fairuz Bin Abd Rahim & Rashid Latief, 2022. "How Does Green Innovation Strategy Influence Corporate Financing? Corporate Social Responsibility and Gender Diversity Play a Moderating Role," IJERPH, MDPI, vol. 19(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    2. Cai, Wei & Wang, Lianguo & Li, Li & Xie, Jun & Jia, Shun & Zhang, Xugang & Jiang, Zhigang & Lai, Kee-hung, 2022. "A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
    4. Hu, Luoke & Liu, Ying & Peng, Chen & Tang, Wangchujun & Tang, Renzhong & Tiwari, Ashutosh, 2018. "Minimising the energy consumption of tool change and tool path of machining by sequencing the features," Energy, Elsevier, vol. 147(C), pages 390-402.
    5. Hu, Luoke & Peng, Chen & Evans, Steve & Peng, Tao & Liu, Ying & Tang, Renzhong & Tiwari, Ashutosh, 2017. "Minimising the machining energy consumption of a machine tool by sequencing the features of a part," Energy, Elsevier, vol. 121(C), pages 292-305.
    6. Xiao, Qinge & Li, Congbo & Tang, Ying & Pan, Jian & Yu, Jun & Chen, Xingzheng, 2019. "Multi-component energy modeling and optimization for sustainable dry gear hobbing," Energy, Elsevier, vol. 187(C).
    7. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    8. Kong, Lingqian & Li, Zhaoyang & Liu, Biqian & Xu, Kai, 2024. "The impact of environmental protection tax reform on low-carbon total factor productivity: Evidence from China's fee-to-tax reform," Energy, Elsevier, vol. 290(C).
    9. Lin, Boqiang & Sai, Rockson, 2022. "Towards low carbon economy: Performance of electricity generation and emission reduction potential in Africa," Energy, Elsevier, vol. 251(C).
    10. Liu, Wei & Li, Li & Cai, Wei & Li, Congbo & Li, Lingling & Chen, Xingzheng & Sutherland, John W., 2020. "Dynamic characteristics and energy consumption modelling of machine tools based on bond graph theory," Energy, Elsevier, vol. 212(C).
    11. Tan, Xiujie & Choi, Yongrok & Wang, Banban & Huang, Xiaoqi, 2020. "Does China's carbon regulatory policy improve total factor carbon efficiency? A fixed-effect panel stochastic frontier analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    12. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    13. Tuo, Junbo & Liu, Fei & Liu, Peiji & Zhang, Hua & Cai, Wei, 2018. "Energy efficiency evaluation for machining systems through virtual part," Energy, Elsevier, vol. 159(C), pages 172-183.
    14. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
    15. Jean Pierre Seclen-Luna & Pablo Moya-Fernández & Ángeles Pereira, 2021. "Exploring the Effects of Innovation Strategies and Size on Manufacturing Firms’ Productivity and Environmental Impact," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    16. Cai, Wei & Li, Yanqi & Li, Li & Lai, Kee-hung & Jia, Shun & Xie, Jun & Zhang, Yuanhui & Hu, Luoke, 2022. "Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: Energy modeling and application," Energy, Elsevier, vol. 252(C).
    17. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    18. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    19. Tao, Miaomiao, 2024. "Dynamics between electric vehicle uptake and green development: Understanding the role of local government competition," Transport Policy, Elsevier, vol. 146(C), pages 227-240.
    20. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120304603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.