IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v121y2017icp524-532.html
   My bibliography  Save this article

A novel approach for acquiring the real-time energy efficiency of machine tools

Author

Listed:
  • Liu, Peiji
  • Liu, Fei
  • Qiu, Hang

Abstract

Machine tools (MT), as the key equipment of manufacturing industry, have enormous quantity and consume great amount of energy. In order to achieve consistent improvement of energy efficiency and environmental performance in manufacturing industry, it is significant to acquire the real-time energy efficiency (REE) of MT. However, due to the unavailable parameters and the limitations of using cutting-force-measuring instruments, it is difficult for existing methods to be applied to acquire the REE of MT. This paper proposes a novel approach for acquiring the REE without any usage of cutting-force-measuring instruments. To develop this approach, a model to characterize the relationship among the REE, input power and spindle speed of MT is established based on the basic data of MT. After obtaining these basic data, this approach only requires obtaining the spindle speed and input power to calculate the REE of MT. It has been tested and validated on a common used machine tool, and the results show its practicability and high level of accuracy for obtaining the REE of MT. This approach can be applied to assess the energy efficiency of MT, to support designers to design high-efficient MT and users to improve the energy efficiency of manufacturing process.

Suggested Citation

  • Liu, Peiji & Liu, Fei & Qiu, Hang, 2017. "A novel approach for acquiring the real-time energy efficiency of machine tools," Energy, Elsevier, vol. 121(C), pages 524-532.
  • Handle: RePEc:eee:energy:v:121:y:2017:i:c:p:524-532
    DOI: 10.1016/j.energy.2017.01.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seow, Yingying & Goffin, Nicholas & Rahimifard, Shahin & Woolley, Elliot, 2016. "A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase," Energy, Elsevier, vol. 109(C), pages 894-905.
    2. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    3. da Graça Carvalho, Maria, 2012. "EU energy and climate change strategy," Energy, Elsevier, vol. 40(1), pages 19-22.
    4. Kepplinger, D. & Templ, M. & Upadhyaya, S., 2013. "Analysis of energy intensity in manufacturing industry using mixed-effects models," Energy, Elsevier, vol. 59(C), pages 754-763.
    5. Cai, Wei & Liu, Fei & Zhou, XiaoNa & Xie, Jun, 2016. "Fine energy consumption allowance of workpieces in the mechanical manufacturing industry," Energy, Elsevier, vol. 114(C), pages 623-633.
    6. Li, Yufeng & He, Yan & Wang, Yan & Wang, Yulin & Yan, Ping & Lin, Shenlong, 2015. "A modeling method for hybrid energy behaviors in flexible machining systems," Energy, Elsevier, vol. 86(C), pages 164-174.
    7. Özkara, Yücel & Atak, Mehmet, 2015. "Regional total-factor energy efficiency and electricity saving potential of manufacturing industry in Turkey," Energy, Elsevier, vol. 93(P1), pages 495-510.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Qinge & Li, Congbo & Tang, Ying & Li, Lingling & Li, Li, 2019. "A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning," Energy, Elsevier, vol. 166(C), pages 142-156.
    2. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    3. Tuo, Junbo & Liu, Fei & Liu, Peiji & Zhang, Hua & Cai, Wei, 2018. "Energy efficiency evaluation for machining systems through virtual part," Energy, Elsevier, vol. 159(C), pages 172-183.
    4. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).
    5. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    6. Xiao, Qinge & Li, Congbo & Tang, Ying & Pan, Jian & Yu, Jun & Chen, Xingzheng, 2019. "Multi-component energy modeling and optimization for sustainable dry gear hobbing," Energy, Elsevier, vol. 187(C).
    7. Shang, Zhendong & Gao, Dong & Jiang, Zhipeng & Lu, Yong, 2019. "Towards less energy intensive heavy-duty machine tools: Power consumption characteristics and energy-saving strategies," Energy, Elsevier, vol. 178(C), pages 263-276.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Luoke & Peng, Chen & Evans, Steve & Peng, Tao & Liu, Ying & Tang, Renzhong & Tiwari, Ashutosh, 2017. "Minimising the machining energy consumption of a machine tool by sequencing the features of a part," Energy, Elsevier, vol. 121(C), pages 292-305.
    2. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
    3. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    4. Shang, Zhendong & Gao, Dong & Jiang, Zhipeng & Lu, Yong, 2019. "Towards less energy intensive heavy-duty machine tools: Power consumption characteristics and energy-saving strategies," Energy, Elsevier, vol. 178(C), pages 263-276.
    5. Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
    6. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    7. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    8. Lin, Boqiang & Chen, Yu, 2020. "Will land transport infrastructure affect the energy and carbon dioxide emissions performance of China’s manufacturing industry?," Applied Energy, Elsevier, vol. 260(C).
    9. Yicong Gao & Qirui Wang & Yixiong Feng & Hao Zheng & Bing Zheng & Jianrong Tan, 2018. "An Energy-Saving Optimization Method of Dynamic Scheduling for Disassembly Line," Energies, MDPI, vol. 11(5), pages 1-18, May.
    10. Guo, Yansong & Duflou, Joost R. & Deng, Yelin & Lauwers, Bert, 2018. "A life cycle energy analysis integrated process planning approach to foster the sustainability of discrete part manufacturing," Energy, Elsevier, vol. 153(C), pages 604-617.
    11. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    12. Arik Levinson, 2017. "Energy Intensity: Prices, Policy, or Composition in US States," Working Papers gueconwpa~17-17-04, Georgetown University, Department of Economics.
    13. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    14. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    15. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    16. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    17. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    18. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    19. Jianmin You & Xiqiang Chen & Jindao Chen, 2021. "Decomposition of Industrial Electricity Efficiency and Electricity-Saving Potential of Special Economic Zones in China Considering the Heterogeneity of Administrative Hierarchy and Regional Location," Energies, MDPI, vol. 14(17), pages 1-22, September.
    20. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:121:y:2017:i:c:p:524-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.