IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v178y2019icp263-276.html
   My bibliography  Save this article

Towards less energy intensive heavy-duty machine tools: Power consumption characteristics and energy-saving strategies

Author

Listed:
  • Shang, Zhendong
  • Gao, Dong
  • Jiang, Zhipeng
  • Lu, Yong

Abstract

Energy conservation in manufacturing sector has received growing attention in an increasingly more carbon-restrained world due to the great concerns over climate change. The heavy-duty machine tool is usually the critical equipment in a factory, which consumes much more power than normal-sized machine tool but received less attention regarding energy saving. In this research, a generic power consumption model was developed from three hierarchies (i.e. system boundary definition, generic power consumption framework and detailed power consumption), which integrates the design parameters of the machine tool thus enabling the prediction of the power consumption even when the machine tool is physically unavailable. In addition, the relations between the power consumed in air-cutting and cutting states were also discussed, which can significantly simplify the study on machine tool power characteristics. The proposed model was verified by experiments and five power consumption characteristics of the tested heavy-duty machine tools were summarised. Additionally, four strategies for designing an energy-efficient machine tool and four tactics for using an existing machine tool more energy efficiently were proposed. This study represents part of a major comprehensive energy conservation research programme for heavy-duty machine tools, which aims to find solutions to improved energy efficiency for the manufacturing industry.

Suggested Citation

  • Shang, Zhendong & Gao, Dong & Jiang, Zhipeng & Lu, Yong, 2019. "Towards less energy intensive heavy-duty machine tools: Power consumption characteristics and energy-saving strategies," Energy, Elsevier, vol. 178(C), pages 263-276.
  • Handle: RePEc:eee:energy:v:178:y:2019:i:c:p:263-276
    DOI: 10.1016/j.energy.2019.04.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219307662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    2. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    3. Cai, Wei & Liu, Fei & Zhou, XiaoNa & Xie, Jun, 2016. "Fine energy consumption allowance of workpieces in the mechanical manufacturing industry," Energy, Elsevier, vol. 114(C), pages 623-633.
    4. Hu, Luoke & Peng, Chen & Evans, Steve & Peng, Tao & Liu, Ying & Tang, Renzhong & Tiwari, Ashutosh, 2017. "Minimising the machining energy consumption of a machine tool by sequencing the features of a part," Energy, Elsevier, vol. 121(C), pages 292-305.
    5. Guo, Yansong & Duflou, Joost R. & Deng, Yelin & Lauwers, Bert, 2018. "A life cycle energy analysis integrated process planning approach to foster the sustainability of discrete part manufacturing," Energy, Elsevier, vol. 153(C), pages 604-617.
    6. Iqbal, Asif & Al-Ghamdi, Khalid A., 2018. "Energy-efficient cellular manufacturing system: Eco-friendly revamping of machine shop configuration," Energy, Elsevier, vol. 163(C), pages 863-872.
    7. Li, Yufeng & He, Yan & Wang, Yan & Wang, Yulin & Yan, Ping & Lin, Shenlong, 2015. "A modeling method for hybrid energy behaviors in flexible machining systems," Energy, Elsevier, vol. 86(C), pages 164-174.
    8. Liu, Peiji & Liu, Fei & Qiu, Hang, 2017. "A novel approach for acquiring the real-time energy efficiency of machine tools," Energy, Elsevier, vol. 121(C), pages 524-532.
    9. He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Plamena Dinolova & Vyara Ruseva & Ognyan Dinolov, 2023. "Energy Efficiency of Induction Motor Drives: State of the Art, Analysis and Recommendations," Energies, MDPI, vol. 16(20), pages 1-26, October.
    2. Shang, Zhendong & Gao, Dong & Jiang, Zhipeng & Lu, Yong, 2021. "A multi-perspective analysis of sustainability of machining processes based on a new extended virtual manufacturing framework," Energy, Elsevier, vol. 225(C).
    3. Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
    4. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    5. Tanja Dergan & Aneta Ivanovska & Tina Kocjančič & Pietro P. M. Iannetta & Marko Debeljak, 2022. "‘Multi-SWOT’ Multi-Stakeholder-Based Sustainability Assessment Methodology: Applied to Improve Slovenian Legume-Based Agri-Food Chains," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    6. Cai, Wei & Wang, Lianguo & Li, Li & Xie, Jun & Jia, Shun & Zhang, Xugang & Jiang, Zhigang & Lai, Kee-hung, 2022. "A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Cai, Wei & Li, Yanqi & Li, Li & Lai, Kee-hung & Jia, Shun & Xie, Jun & Zhang, Yuanhui & Hu, Luoke, 2022. "Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: Energy modeling and application," Energy, Elsevier, vol. 252(C).
    8. Zhao, Junhua & Li, Li & Li, Lingling & Zhang, Yunfeng & Lin, Jiang & Cai, Wei & Sutherland, John W., 2023. "A multi-dimension coupling model for energy-efficiency of a machining process," Energy, Elsevier, vol. 274(C).
    9. Liang Yang & Qinming Liu & Tangbin Xia & Chunming Ye & Jiaxiang Li, 2022. "Preventive Maintenance Strategy Optimization in Manufacturing System Considering Energy Efficiency and Quality Cost," Energies, MDPI, vol. 15(21), pages 1-18, November.
    10. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).
    11. Xiao, Qinge & Li, Congbo & Tang, Ying & Pan, Jian & Yu, Jun & Chen, Xingzheng, 2019. "Multi-component energy modeling and optimization for sustainable dry gear hobbing," Energy, Elsevier, vol. 187(C).
    12. Alexey I. Shinkevich & Tatiana V. Malysheva & Yulia V. Vertakova & Vladimir A. Plotnikov, 2021. "Optimization of Energy Consumption in Chemical Production Based on Descriptive Analytics and Neural Network Modeling," Mathematics, MDPI, vol. 9(4), pages 1-20, February.
    13. Benjie Li & Hualin Zheng & Xiao Yang & Liang Guo & Binglin Li, 2020. "Energy Optimization for Motorized Spindle System of Machine Tools under Minimum Thermal Effects and Maximum Productivity Constraints," Energies, MDPI, vol. 13(22), pages 1-17, November.
    14. Liu, Wei & Li, Li & Cai, Wei & Li, Congbo & Li, Lingling & Chen, Xingzheng & Sutherland, John W., 2020. "Dynamic characteristics and energy consumption modelling of machine tools based on bond graph theory," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    2. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    3. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    4. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    5. Hu, Luoke & Liu, Ying & Peng, Chen & Tang, Wangchujun & Tang, Renzhong & Tiwari, Ashutosh, 2018. "Minimising the energy consumption of tool change and tool path of machining by sequencing the features," Energy, Elsevier, vol. 147(C), pages 390-402.
    6. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    7. Hu, Luoke & Peng, Chen & Evans, Steve & Peng, Tao & Liu, Ying & Tang, Renzhong & Tiwari, Ashutosh, 2017. "Minimising the machining energy consumption of a machine tool by sequencing the features of a part," Energy, Elsevier, vol. 121(C), pages 292-305.
    8. Tangbin Xia & Xiangxin An & Huaqiang Yang & Yimin Jiang & Yuhui Xu & Meimei Zheng & Ershun Pan, 2023. "Efficient Energy Use in Manufacturing Systems—Modeling, Assessment, and Management Strategy," Energies, MDPI, vol. 16(3), pages 1-20, January.
    9. Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
    10. Zhang, Jiaqi & Han, Xin & Li, Li & Jia, Shun & Jiang, Zhigang & Duan, Xiangmin & Lai, Kee-hung & Cai, Wei, 2023. "Multi-objective optimisation for energy saving and high efficiency production oriented multidirectional turning based on improved fireworks algorithm considering energy, efficiency and quality," Energy, Elsevier, vol. 284(C).
    11. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    12. Hu, Luoke & Liu, Ying & Lohse, Niels & Tang, Renzhong & Lv, Jingxiang & Peng, Chen & Evans, Steve, 2017. "Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed," Energy, Elsevier, vol. 139(C), pages 935-946.
    13. Chen, Xingzheng & Li, Congbo & Tang, Ying & Li, Li & Du, Yanbin & Li, Lingling, 2019. "Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time," Energy, Elsevier, vol. 175(C), pages 1021-1037.
    14. Yicong Gao & Qirui Wang & Yixiong Feng & Hao Zheng & Bing Zheng & Jianrong Tan, 2018. "An Energy-Saving Optimization Method of Dynamic Scheduling for Disassembly Line," Energies, MDPI, vol. 11(5), pages 1-18, May.
    15. Liu, Peiji & Liu, Fei & Qiu, Hang, 2017. "A novel approach for acquiring the real-time energy efficiency of machine tools," Energy, Elsevier, vol. 121(C), pages 524-532.
    16. Guo, Yansong & Duflou, Joost R. & Deng, Yelin & Lauwers, Bert, 2018. "A life cycle energy analysis integrated process planning approach to foster the sustainability of discrete part manufacturing," Energy, Elsevier, vol. 153(C), pages 604-617.
    17. Tuo, Junbo & Liu, Fei & Liu, Peiji & Zhang, Hua & Cai, Wei, 2018. "Energy efficiency evaluation for machining systems through virtual part," Energy, Elsevier, vol. 159(C), pages 172-183.
    18. Minda Ma & Ran Yan & Weiguang Cai, 2018. "Energy savings evaluation in public building sector during the 10th–12th FYP periods of China: an extended LMDI model approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 429-441, May.
    19. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    20. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:178:y:2019:i:c:p:263-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.