IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v153y2018icp349-358.html
   My bibliography  Save this article

Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions

Author

Listed:
  • Zhong, Wenjun
  • Tamilselvan, P.
  • Wang, Qian
  • He, Zhixia
  • Feng, Huan
  • Yu, Xiong

Abstract

Biodiesel has the potential to replace the conventional diesel fuel, thus the increasing interest and research in the use of biodiesel fuels for transport applications to improve the emisions. In this work, the spray characteristics of diesel with hydrogenated catalytic biodiesel (HCB) fuel blends were investigated in a constant volume combustion chamber to provide an accessible tool to predict spray behavior based on cheap and off-engine condition measurements for applying HCB in diesel engines. As two important indexes of spray characteristics, the liquid penetration and vapor penetration were researched using Mie-scattering and Schlieren methods under non-reacting conditions to avoid the influence of combustion on the mixing and vaporization processes. Besides, the liquid length of blended fuel under reacting conditions is measured by a laser system to figure out the effect of combustion on atomization process. The results show that the liquid length decreases with increasing HCB ratio in the blends and the fuel density has greater influence on the liquid length than the fuel viscosity. By comparing the liquid length result, a slight difference between the different blends on vapor penetration was observed under the same boundary condition. The spray characteristics of blends indicate that HCB is a good blending component for blended fuel which can be applied in diesel engine directly in large-scale. Moreover, the liquid length of laser Mie-scattering method is higher than that of LED Mie-scattering and the liquid length under reacting conditions is shorter than that of inert conditions.

Suggested Citation

  • Zhong, Wenjun & Tamilselvan, P. & Wang, Qian & He, Zhixia & Feng, Huan & Yu, Xiong, 2018. "Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions," Energy, Elsevier, vol. 153(C), pages 349-358.
  • Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:349-358
    DOI: 10.1016/j.energy.2018.04.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218306492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    2. Zareh, Parvaneh & Zare, Ali Asghar & Ghobadian, Barat, 2017. "Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine," Energy, Elsevier, vol. 139(C), pages 883-894.
    3. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    4. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    5. Babu, D. & Anand, R., 2017. "Effect of biodiesel-diesel-n-pentanol and biodiesel-diesel-n-hexanol blends on diesel engine emission and combustion characteristics," Energy, Elsevier, vol. 133(C), pages 761-776.
    6. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Papagiannakis, Roussos G. & Kyritsis, Dimitrios C., 2014. "Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, die," Energy, Elsevier, vol. 73(C), pages 354-366.
    7. Bohl, Thomas & Tian, Guohong & Smallbone, Andrew & Roskilly, Anthony P., 2017. "Macroscopic spray characteristics of next-generation bio-derived diesel fuels in comparison to mineral diesel," Applied Energy, Elsevier, vol. 186(P3), pages 562-573.
    8. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    9. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
    10. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    11. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    12. Murugesan, A. & Umarani, C. & Chinnusamy, T.R. & Krishnan, M. & Subramanian, R. & Neduzchezhain, N., 2009. "Production and analysis of bio-diesel from non-edible oils--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 825-834, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Xuan, Tiemin & Li, Bei & He, Zhixia & Wang, Qian & Yu, Xiong, 2019. "Simultaneous study on spray liquid length, ignition and combustion characteristics of diesel and hydrogenated catalytic biodiesel in a constant volume combustion chamber," Renewable Energy, Elsevier, vol. 140(C), pages 761-771.
    2. Alfredas Rimkus & Justas Žaglinskis & Saulius Stravinskas & Paulius Rapalis & Jonas Matijošius & Ákos Bereczky, 2019. "Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine," Energies, MDPI, vol. 12(15), pages 1-18, August.
    3. Zhong, Wenjun & Pachiannan, Tamilselvan & Li, Zilong & Qian, Yong & Zhang, Yanzhi & Wang, Qian & He, Zhixia & Lu, Xingcai, 2019. "Combustion and emission characteristics of gasoline/hydrogenated catalytic biodiesel blends in gasoline compression ignition engines under different loads of double injection strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Muteeb ul Haq & Ali Turab Jafry & Muhammad Salman Abbasi & Muhammad Jawad & Saad Ahmad & Taqi Ahmad Cheema & Naseem Abbas, 2022. "Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions," Energies, MDPI, vol. 15(20), pages 1-18, October.
    5. Zuo, Qingsong & Xie, Yong & E, Jiaqiang & Zhu, Xinning & Zhang, Bin & Tang, Yuanyou & Zhu, Guohui & Wang, Zhiqi & Zhang, Jianping, 2020. "Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine," Energy, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Wenjun & Pachiannan, Tamilselvan & He, Zhixia & Xuan, Tiemin & Wang, Qian, 2019. "Experimental study of ignition, lift-off length and emission characteristics of diesel/hydrogenated catalytic biodiesel blends," Applied Energy, Elsevier, vol. 235(C), pages 641-652.
    2. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    3. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    4. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    5. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    6. Mulkan, Andi & Mohd Zulkifli, Nurin Wahidah & Husin, Husni & Ahmadi, & Dahlan, Irvan, 2024. "Performance and emissions assessment under full load operation of an unmodified diesel engine running on biodiesel-based waste cooking oil synthesized using JPW solid catalyst," Renewable Energy, Elsevier, vol. 224(C).
    7. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    8. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    9. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    10. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    11. Lapuerta, Magín & Hernández, Juan José & Fernández-Rodríguez, David & Cova-Bonillo, Alexis, 2017. "Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber," Energy, Elsevier, vol. 118(C), pages 613-621.
    12. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    13. Panchal, Balaji & Chang, Tao & Qin, Shenjun & Sun, Yuzhuang & Wang, Jinxi & Bian, Kai, 2020. "Optimization and kinetics of tung nut oil transesterification with methanol using novel solid acidic ionic liquid polymer as catalyst for methyl ester synthesis," Renewable Energy, Elsevier, vol. 151(C), pages 796-804.
    14. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    15. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    16. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    17. Boopathi, D. & Thiyagarajan, S. & Edwin Geo, V. & Madhankumar, S. & Gheith, R., 2018. "Effect of geraniol on performance, emission and combustion characteristics of CI engine fuelled with gutter oil obtained from different sources," Energy, Elsevier, vol. 157(C), pages 391-401.
    18. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    19. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    20. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:153:y:2018:i:c:p:349-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.