IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp903-912.html
   My bibliography  Save this article

Technological and energetic evaluation of maize stover silage for methane production on technical scale

Author

Listed:
  • Wojcieszak, Dawid
  • Przybył, Jacek
  • Myczko, Renata
  • Myczko, Andrzej

Abstract

The aim of this study was technological research of maize stover digestion in an agricultural biogas plant and to determine the parameters of digestion under real-life conditions. The authors calculated the electric and thermal power of the cogeneration system in a biogas plant using maize stover. The load of the digestion mixture was maintained at 12% and the volumetric load (BR) at 3.62 kg LOI/m3/day by applying daily amounts of 3.33 Mg of cow slurry and 109.59 kg of maize stover silage into the digestion chamber. The substrates were mixed at a 9:1 ratio. The daily yield of biogas containing 54.0% of methane amounted to 28.71 m3, i.e. 15.50 m3 of methane daily. The annual yield of biogas from the substrates would have amounted to 10,480.6 m3. This biogas plant using the testing substrates produced 16.5 MWh of electricity and 19.9 MWh of heat per year.

Suggested Citation

  • Wojcieszak, Dawid & Przybył, Jacek & Myczko, Renata & Myczko, Andrzej, 2018. "Technological and energetic evaluation of maize stover silage for methane production on technical scale," Energy, Elsevier, vol. 151(C), pages 903-912.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:903-912
    DOI: 10.1016/j.energy.2018.03.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
    2. Zhang, Xiliang & Ruoshui, Wang & Molin, Huo & Martinot, Eric, 2010. "A study of the role played by renewable energies in China's sustainable energy supply," Energy, Elsevier, vol. 35(11), pages 4392-4399.
    3. Mohseni, Farzad & Magnusson, Mimmi & Görling, Martin & Alvfors, Per, 2012. "Biogas from renewable electricity – Increasing a climate neutral fuel supply," Applied Energy, Elsevier, vol. 90(1), pages 11-16.
    4. Li, Dong & Huang, Xianbo & Wang, Qingjing & Yuan, Yuexiang & Yan, Zhiying & Li, Zhidong & Huang, Yajun & Liu, Xiaofeng, 2016. "Kinetics of methane production and hydrolysis in anaerobic digestion of corn stover," Energy, Elsevier, vol. 102(C), pages 1-9.
    5. Qian, Yong & Sun, Shuzhou & Ju, Dehao & Shan, Xinxing & Lu, Xingcai, 2017. "Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 50-58.
    6. Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
    7. Igliński, Bartłomiej & Buczkowski, Roman & Iglińska, Anna & Cichosz, Marcin & Piechota, Grzegorz & Kujawski, Wojciech, 2012. "Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4890-4900.
    8. Mönch-Tegeder, Matthias & Lemmer, Andreas & Oechsner, Hans, 2014. "Enhancement of methane production with horse manure supplement and pretreatment in a full-scale biogas process," Energy, Elsevier, vol. 73(C), pages 523-530.
    9. Zhou, Shuxia & Zhang, Yulin & Dong, Yuping, 2012. "Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung," Energy, Elsevier, vol. 46(1), pages 644-648.
    10. Cieślik, Marta & Dach, Jacek & Lewicki, Andrzej & Smurzyńska, Anna & Janczak, Damian & Pawlicka-Kaczorowska, Joanna & Boniecki, Piotr & Cyplik, Paweł & Czekała, Wojciech & Jóźwiakowski, Krzysztof, 2016. "Methane fermentation of the maize straw silage under meso- and thermophilic conditions," Energy, Elsevier, vol. 115(P2), pages 1495-1502.
    11. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    12. White, Eric M. & Latta, Greg & Alig, Ralph J. & Skog, Kenneth E. & Adams, Darius M., 2013. "Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard," Energy Policy, Elsevier, vol. 58(C), pages 64-74.
    13. Hassan, Muhammad & Ding, Weimin & Umar, Muhammad & Hei, Kunlun & Bi, Jinhua & Shi, Zhendan, 2017. "Methane enhancement and asynchronism minimization through co-digestion of goose manure and NaOH solubilized corn stover with waste activated sludge," Energy, Elsevier, vol. 118(C), pages 1256-1263.
    14. Dach, Jacek & Boniecki, Piotr & Przybył, Jacek & Janczak, Damian & Lewicki, Andrzej & Czekała, Wojciech & Witaszek, Kamil & Rodríguez Carmona, Pablo César & Cieślik, Marta, 2014. "Energetic efficiency analysis of the agricultural biogas plant in 250kWe experimental installation," Energy, Elsevier, vol. 69(C), pages 34-38.
    15. Yamasaki, Yudai & Kanno, Masanobu & Suzuki, Yoshitaka & Kaneko, Shigehiko, 2013. "Development of an engine control system using city gas and biogas fuel mixture," Applied Energy, Elsevier, vol. 101(C), pages 465-474.
    16. Morini, Mirko & Pinelli, Michele & Venturini, Mauro, 2009. "Analysis of biogas compression system dynamics," Applied Energy, Elsevier, vol. 86(11), pages 2466-2475, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
    2. Wojcieszak, Dawid & Przybył, Jacek & Ratajczak, Izabela & Goliński, Piotr & Janczak, Damian & Waśkiewicz, Agnieszka & Szentner, Kinga & Woźniak, Magdalena, 2020. "Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cieślik, Marta & Dach, Jacek & Lewicki, Andrzej & Smurzyńska, Anna & Janczak, Damian & Pawlicka-Kaczorowska, Joanna & Boniecki, Piotr & Cyplik, Paweł & Czekała, Wojciech & Jóźwiakowski, Krzysztof, 2016. "Methane fermentation of the maize straw silage under meso- and thermophilic conditions," Energy, Elsevier, vol. 115(P2), pages 1495-1502.
    2. Wojcieszak, Dawid & Przybył, Jacek & Ratajczak, Izabela & Goliński, Piotr & Janczak, Damian & Waśkiewicz, Agnieszka & Szentner, Kinga & Woźniak, Magdalena, 2020. "Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process," Energy, Elsevier, vol. 198(C).
    3. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    5. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    6. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    7. Wei, Zhilong & Zhen, Haisheng & Leung, Chunwah & Cheung, Chunshun & Huang, Zuohua, 2020. "Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame," Energy, Elsevier, vol. 196(C).
    8. Jakub Frankowski & Wojciech Czekała, 2023. "Agricultural Plant Residues as Potential Co-Substrates for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
    9. Magdalena Zubrzycka, & Janusz Wojdalski, & Karol Tucki, & Mariusz Zubrzycki, 2017. "Uwarunkowania rozwoju sektora biogazu rolniczego w Polsce," Journal of Agribusiness and Rural Development, University of Life Sciences, Poznan, Poland, vol. 43(1), March.
    10. Kim, Yungjin & Kawahara, Nobuyuki & Tsuboi, Kazuya & Tomita, Eiji, 2016. "Combustion characteristics and NOX emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine," Applied Energy, Elsevier, vol. 182(C), pages 539-547.
    11. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    12. Dach, Jacek & Boniecki, Piotr & Przybył, Jacek & Janczak, Damian & Lewicki, Andrzej & Czekała, Wojciech & Witaszek, Kamil & Rodríguez Carmona, Pablo César & Cieślik, Marta, 2014. "Energetic efficiency analysis of the agricultural biogas plant in 250kWe experimental installation," Energy, Elsevier, vol. 69(C), pages 34-38.
    13. Hassan, Muhammad & Ding, Weimin & Umar, Muhammad & Hei, Kunlun & Bi, Jinhua & Shi, Zhendan, 2017. "Methane enhancement and asynchronism minimization through co-digestion of goose manure and NaOH solubilized corn stover with waste activated sludge," Energy, Elsevier, vol. 118(C), pages 1256-1263.
    14. Jakub Frankowski & Maciej Zaborowicz & Jacek Dach & Wojciech Czekała & Jacek Przybył, 2020. "Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Dee," Energies, MDPI, vol. 13(11), pages 1-15, June.
    15. Piwowar, Arkadiusz & Dzikuć, Maciej & Adamczyk, Janusz, 2016. "Agricultural biogas plants in Poland – selected technological, market and environmental aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 69-74.
    16. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    17. He, Huiban & Wang, Ziyu & Wang, Weiwei & He, Haoxing & Yan, Jing & Wang, Hongliang & Cui, Zongjun & Yuan, Xufeng, 2024. "Mitigating short-circuits through synergistic temperature and hydraulic retention time control for enhancing methane yield in continuous stirred-tank reactors," Energy, Elsevier, vol. 289(C).
    18. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
    20. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:903-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.