IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v90y2012i1p11-16.html
   My bibliography  Save this article

Biogas from renewable electricity – Increasing a climate neutral fuel supply

Author

Listed:
  • Mohseni, Farzad
  • Magnusson, Mimmi
  • Görling, Martin
  • Alvfors, Per

Abstract

If considering the increased utilisation of renewable electricity during the last decade, it is realistic to assume that a significant part of future power production will originate from renewable sources. These are normally intermittent and would cause a fluctuating electricity production. A common suggestion for stabilising intermittent power in the grid is to produce hydrogen through water electrolysis thus storing the energy for later. It could work as an excellent load management tool to control the intermittency, due to its flexibility. In turn, hydrogen could be used as a fuel in transport if compressed or liquefied. However, since hydrogen is highly energy demanding to compress, and moreover, has relatively low energy content per volume it would be more beneficial to store the hydrogen chemically attached to carbon forming synthetic methane (i.e. biogas).

Suggested Citation

  • Mohseni, Farzad & Magnusson, Mimmi & Görling, Martin & Alvfors, Per, 2012. "Biogas from renewable electricity – Increasing a climate neutral fuel supply," Applied Energy, Elsevier, vol. 90(1), pages 11-16.
  • Handle: RePEc:eee:appene:v:90:y:2012:i:1:p:11-16
    DOI: 10.1016/j.apenergy.2011.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911004697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bcrp, 2008. "Reporte de Inflación," Revista Moneda, Banco Central de Reserva del Perú, issue 138, pages 4-8.
    2. Ronny Glöckner & Øystein Ulleberg & Ragne Hildrum & Catherine E. Grégoire & Padró Ife, 2002. "Integrating Renewables for Remote Fuel Systems," Energy & Environment, , vol. 13(4), pages 735-747, September.
    3. AfDB AfDB, . "AfDB Group Annual Report 2007," Annual Report, African Development Bank, number 63 edited by Koua Louis Kouakou.
    4. Ahmed, I. & Gupta, A.K., 2009. "Evolution of syngas from cardboard gasification," Applied Energy, Elsevier, vol. 86(9), pages 1732-1740, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saebea, Dang & Authayanun, Suthida & Patcharavorachot, Yaneeporn & Paengjuntuek, Woranee & Arpornwichanop, Amornchai, 2013. "Use of different renewable fuels in a steam reformer integrated into a solid oxide fuel cell: Theoretical analysis and performance comparison," Energy, Elsevier, vol. 51(C), pages 305-313.
    2. Ramiar Sadegh-Vaziri & Marko Amovic & Rolf Ljunggren & Klas Engvall, 2015. "A Medium-Scale 50 MW fuel Biomass Gasification Based Bio-SNG Plant: A Developed Gas Cleaning Process," Energies, MDPI, vol. 8(6), pages 1-16, June.
    3. Yi-Tui Chen, 2016. "A Cost Analysis of Food Waste Composting in Taiwan," Sustainability, MDPI, vol. 8(11), pages 1-13, November.
    4. Avelino Gonçalves, Fabiano & dos Santos, Everaldo Silvino & de Macedo, Gorete Ribeiro, 2015. "Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1287-1303.
    5. Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
    6. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    7. Luo, Shuai & Jain, Akshay & Aguilera, Anibal & He, Zhen, 2017. "Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell," Applied Energy, Elsevier, vol. 206(C), pages 879-886.
    8. Ahlström, Johan M. & Walter, Viktor & Göransson, Lisa & Papadokonstantakis, Stavros, 2022. "The role of biomass gasification in the future flexible power system – BECCS or CCU?," Renewable Energy, Elsevier, vol. 190(C), pages 596-605.
    9. Burkhardt, Marko & Jordan, Isabel & Heinrich, Sabrina & Behrens, Johannes & Ziesche, André & Busch, Günter, 2019. "Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 818-826.
    10. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    11. Kravanja, Zdravko & Čuček, Lidija, 2013. "Multi-objective optimisation for generating sustainable solutions considering total effects on the environment," Applied Energy, Elsevier, vol. 101(C), pages 67-80.
    12. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    13. Uebbing, Jennifer & Rihko-Struckmann, Liisa K. & Sundmacher, Kai, 2019. "Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies," Applied Energy, Elsevier, vol. 233, pages 271-282.
    14. Mohseni, Farzad & Görling, Martin & Alvfors, Per, 2013. "The competitiveness of synthetic natural gas as a propellant in the Swedish fuel market," Energy Policy, Elsevier, vol. 52(C), pages 810-818.
    15. Bekkering, J. & Broekhuis, A.A. & van Gemert, W.J.T. & Hengeveld, E.J., 2013. "Balancing gas supply and demand with a sustainable gas supply chain – A study based on field data," Applied Energy, Elsevier, vol. 111(C), pages 842-852.
    16. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    17. Chen, Man & Zhang, Fang & Zhang, Yan & Zeng, Raymond J., 2013. "Alkali production from bipolar membrane electrodialysis powered by microbial fuel cell and application for biogas upgrading," Applied Energy, Elsevier, vol. 103(C), pages 428-434.
    18. Wojcieszak, Dawid & Przybył, Jacek & Myczko, Renata & Myczko, Andrzej, 2018. "Technological and energetic evaluation of maize stover silage for methane production on technical scale," Energy, Elsevier, vol. 151(C), pages 903-912.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gimeno, Beatriz & Artal, Manuela & Velasco, Inmaculada & Blanco, Sofía T. & Fernández, Javier, 2017. "Influence of SO2 on CO2 storage for CCS technology: Evaluation of CO2/SO2 co-capture," Applied Energy, Elsevier, vol. 206(C), pages 172-180.
    2. Hong, Jongsup & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2010. "Operating pressure dependence of the pressurized oxy-fuel combustion power cycle," Energy, Elsevier, vol. 35(12), pages 5391-5399.
    3. Schapiro Mario, 2010. "Development Bank, Law and Innovation Financing in a New Brazilian Economy," The Law and Development Review, De Gruyter, vol. 3(2), pages 78-121, May.
    4. Difs, Kristina, 2010. "National energy policies: Obstructing the reduction of global CO2 emissions? An analysis of Swedish energy policies for the district heating sector," Energy Policy, Elsevier, vol. 38(12), pages 7775-7782, December.
    5. Young, Jason & Park, Peter Y., 2014. "Hotzone identification with GIS-based post-network screening analysis," Journal of Transport Geography, Elsevier, vol. 34(C), pages 106-120.
    6. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    7. Jastrzębiec-Witowska, Anna, 2015. "Rolnictwo obywatelskie w USA: studium przypadku stanu Kentucky," Village and Agriculture (Wieś i Rolnictwo), Polish Academy of Sciences (IRWiR PAN), Institute of Rural and Agricultural Development, vol. 4(169).
    8. Jolanta Kryspin-Watson & John Pollner & Sonja Nieuwejaar, 2008. "Climate Change Adaptation in Europe and Central Asia," World Bank Publications - Reports 25985, The World Bank Group.
    9. Pérez-Martínez, P.J. & Vassallo-Magro, J.M., 2013. "Changes in the external costs of freight surface transport In Spain," Research in Transportation Economics, Elsevier, vol. 42(1), pages 61-76.
    10. Muhongayire, Wivine, 2012. "An Economic Assessment of the Factors Influencing Smallholder Farmers' Access to Formal Credit: A Case Study of Rwamagana District, Rwanda," Research Theses 198522, Collaborative Masters Program in Agricultural and Applied Economics.
    11. Barbieri, Stefano & Edwards, John H.Y., 2017. "Middle-class flight from post-Katrina New Orleans: A theoretical analysis of inequality and schooling," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 12-29.
    12. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    13. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    14. Lee, See Hoon & Yoon, Sang Jun & Ra, Ho Won & Son, Young Il & Hong, Jai Chang & Lee, Jae Goo, 2010. "Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier," Energy, Elsevier, vol. 35(8), pages 3239-3244.
    15. Zou, Xuehua & Chen, Tianhu & Zhang, Ping & Chen, Dong & He, Junkai & Dang, Yanliu & Ma, Zhiyuan & Chen, Ye & Toloueinia, Panteha & Zhu, Chengzhu & Xie, Jingjing & Liu, Haibo & Suib, Steven L., 2018. "High catalytic performance of Fe-Ni/Palygorskite in the steam reforming of toluene for hydrogen production," Applied Energy, Elsevier, vol. 226(C), pages 827-837.
    16. Nalin Abeysekera & Ananda Wickramasinghe, 2012. "Transforming nobody to somebody: Do transformational leadership and relationship marketing make a difference for sustainable marketing?," International Journal of Trade and Global Markets, Inderscience Enterprises Ltd, vol. 5(1), pages 31-42.
    17. Sukati, Mphumuzi, 2014. "The South African Bio ethanol blend mandate and its implications on regional agricultural markets and welfare," MPRA Paper 57702, University Library of Munich, Germany.
    18. Ahmed, I. & Gupta, A.K., 2009. "Characteristics of cardboard and paper gasification with CO2," Applied Energy, Elsevier, vol. 86(12), pages 2626-2634, December.
    19. Ahmed, I.I. & Gupta, A.K., 2012. "Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution," Applied Energy, Elsevier, vol. 91(1), pages 75-81.
    20. Kaplinsky, Raphael & Terheggen, Anne & Tijaja, Julia, 2011. "China as a Final Market: The Gabon Timber and Thai Cassava Value Chains," World Development, Elsevier, vol. 39(7), pages 1177-1190, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:90:y:2012:i:1:p:11-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.