Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Deep Neural Modeling Methods
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kwietniewska, Ewa & Tys, Jerzy, 2014. "Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 491-500.
- Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
- Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
- Orive, M. & Cebrián, M. & Zufía, J., 2016. "Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry," Renewable Energy, Elsevier, vol. 97(C), pages 532-540.
- Cieślik, Marta & Dach, Jacek & Lewicki, Andrzej & Smurzyńska, Anna & Janczak, Damian & Pawlicka-Kaczorowska, Joanna & Boniecki, Piotr & Cyplik, Paweł & Czekała, Wojciech & Jóźwiakowski, Krzysztof, 2016. "Methane fermentation of the maize straw silage under meso- and thermophilic conditions," Energy, Elsevier, vol. 115(P2), pages 1495-1502.
- Bugała, A. & Zaborowicz, M. & Boniecki, P. & Janczak, D. & Koszela, K. & Czekała, W. & Lewicki, A., 2018. "Short-term forecast of generation of electric energy in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 306-312.
- Dach, Jacek & Boniecki, Piotr & Przybył, Jacek & Janczak, Damian & Lewicki, Andrzej & Czekała, Wojciech & Witaszek, Kamil & Rodríguez Carmona, Pablo César & Cieślik, Marta, 2014. "Energetic efficiency analysis of the agricultural biogas plant in 250kWe experimental installation," Energy, Elsevier, vol. 69(C), pages 34-38.
- Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
- Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
- Dach, J. & Koszela, K. & Boniecki, P. & Zaborowicz, M. & Lewicki, A. & Czekała, W. & Skwarcz, J. & Qiao, Wei & Piekarska-Boniecka, H. & Białobrzewski, I., 2016. "The use of neural modelling to estimate the methane production from slurry fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 603-610.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dominika Sieracka & Maciej Zaborowicz & Jakub Frankowski, 2023. "Identification of Characteristic Parameters in Seed Yielding of Selected Varieties of Industrial Hemp ( Cannabis sativa L.) Using Artificial Intelligence Methods," Agriculture, MDPI, vol. 13(5), pages 1-11, May.
- David Muñoz-Rodríguez & Pilar Aparicio-Martínez & Alberto-Jesus Perea-Moreno, 2022. "Contribution of Agroforestry Biomass Valorisation to Energy and Environmental Sustainability," Energies, MDPI, vol. 15(22), pages 1-7, November.
- Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
- Rocio Camarena-Martinez & Rocio A. Lizarraga-Morales & Roberto Baeza-Serrato, 2021. "Classification of Geomembranes as Raw Material for Defects Reduction in the Manufacture of Biodigesters Using an Artificial Neuronal Network," Energies, MDPI, vol. 14(21), pages 1-13, November.
- Jakub Frankowski & Wojciech Czekała, 2023. "Agricultural Plant Residues as Potential Co-Substrates for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
- Jolanta Batog & Jakub Frankowski & Aleksandra Wawro & Agnieszka Łacka, 2020. "Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop," Energies, MDPI, vol. 13(23), pages 1-12, November.
- Jakub Mazurkiewicz, 2022. "The Biogas Potential of Oxytree Leaves," Energies, MDPI, vol. 15(23), pages 1-16, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wojcieszak, Dawid & Przybył, Jacek & Ratajczak, Izabela & Goliński, Piotr & Janczak, Damian & Waśkiewicz, Agnieszka & Szentner, Kinga & Woźniak, Magdalena, 2020. "Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process," Energy, Elsevier, vol. 198(C).
- Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
- Yao, Yao & Huang, Gordon & An, Chunjiang & Chen, Xiujuan & Zhang, Peng & Xin, Xiaying & Jian Shen, & Agnew, Joy, 2020. "Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Mancini, Enrico & Tian, Hailin & Angelidaki, Irini & Fotidis, Ioannis A., 2021. "The implications of using organic-rich industrial wastewater as biomethanation feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Chen, Ting & Shen, Dongsheng & Jin, Yiying & Li, Hailong & Yu, Zhixin & Feng, Huajun & Long, Yuyang & Yin, Jun, 2017. "Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model," Applied Energy, Elsevier, vol. 208(C), pages 666-677.
- Ma, Guiling & Chen, Yanting & Ndegwa, Pius, 2021. "Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
- Hashemi, Seyed Sajad & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Hydrothermal pretreatment of safflower straw to enhance biogas production," Energy, Elsevier, vol. 172(C), pages 545-554.
- Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
- Poblete, Israel Bernardo S. & Araujo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2020. "Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
- Grosser, A. & Neczaj, E. & Jasinska, Anna & Celary, P., 2020. "The influence of grease trap sludge sterilization on the performance of anaerobic co-digestion of sewage sludge," Renewable Energy, Elsevier, vol. 161(C), pages 988-997.
- Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
- Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Li, Demao & Tang, Ruohao & Yu, Liang & Chen, Limei & Chen, Shulin & Xu, Song & Gao, Feng, 2020. "Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste," Renewable Energy, Elsevier, vol. 153(C), pages 420-429.
- German Smetana & Ewa Neczaj & Anna Grosser, 2021. "Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes," Energies, MDPI, vol. 14(14), pages 1-18, July.
- Wenzhi Xu & Yongqun Zhu & Xie Wang & Lei Ji & Hong Wang & Li Yao & Chaowen Lin, 2021. "The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
- Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
- Renjun Ruan & Jiashun Cao & Chao Li & Di Zheng & Jingyang Luo, 2017. "The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester," Energies, MDPI, vol. 10(2), pages 1-19, February.
- Sandra Gonzalez-Piedra & Héctor Hernández-García & Juan M. Perez-Morales & Laura Acosta-Domínguez & Juan-Rodrigo Bastidas-Oyanedel & Eliseo Hernandez-Martinez, 2021. "A Study on the Feasibility of Anaerobic Co-Digestion of Raw Cheese Whey with Coffee Pulp Residues," Energies, MDPI, vol. 14(12), pages 1-11, June.
More about this item
Keywords
biowaste; energy potential; biogas; solid biofuels; energy value; artificial neural networks; deep learning; neural modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3014-:d:370249. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.