IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp662-674.html
   My bibliography  Save this article

Simulation and testing of a solar reciprocating steam engine

Author

Listed:
  • Dellicompagni, Pablo
  • Saravia, Luis
  • Altamirano, Martín
  • Franco, Judith

Abstract

A solar thermal system for steam generation was built in the city of San Carlos, Salta province, Argentina. This system is a Linear Fresnel Collector (LFC) used for producing steam for many applications, such as vegetable drying, water desalination, and power generation. A steam engine was coupled to this LFC for power generation. This paper shows the steam engine simulation, where thermal and dynamic equations were developed and written on the Simusol program. Mechanical power output and other parameters of the engine were also simulated as well as steam consumption, in order to establish laws in relation with mechanical load on axis and regulate the rpm regime and inlet pressure for optimal steam engine operation. The results of the simulation of power output are compared with experimental measurements. The steam engine was tested, and the obtained experimental results demonstrate the feasibility of generating power (i.e. 2 kW ± 5% (288 rpm) or 8 kW ± 2% (400 rpm)). Furthermore, it is found that the experimental measurements are in an acceptable agreement with the simulation outcomes of the analytical model. Finally, knowing the steam engine behavior allows to optimize the solar energy resource use for power generation.

Suggested Citation

  • Dellicompagni, Pablo & Saravia, Luis & Altamirano, Martín & Franco, Judith, 2018. "Simulation and testing of a solar reciprocating steam engine," Energy, Elsevier, vol. 151(C), pages 662-674.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:662-674
    DOI: 10.1016/j.energy.2018.03.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421830519X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badami, M. & Mura, M., 2009. "Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE)," Energy, Elsevier, vol. 34(9), pages 1315-1324.
    2. Ferrara, G. & Manfrida, G. & Pescioni, A., 2013. "Model of a small steam engine for renewable domestic CHP (combined heat and power) system," Energy, Elsevier, vol. 58(C), pages 78-85.
    3. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    4. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    5. Bouvier, Jean-Louis & Lemort, Vincent & Michaux, Ghislain & Salagnac, Patrick & Kientz, Thiebaut, 2016. "Experimental study of an oil-free steam piston expander for micro-combined heat and power systems," Applied Energy, Elsevier, vol. 169(C), pages 788-798.
    6. Tenissara, Nopporn & Thepa, Sirichai & Monyakul, Veerapol, 2018. "Simulation, construction and evaluation of cheap piston expander for low-pressure power generation by compressed air as working fluid," Energy, Elsevier, vol. 142(C), pages 655-665.
    7. Badr, O. & Naik, S. & O'Callaghan, P.W. & Probert, S.D., 1991. "Expansion machine for a low power-output steam Rankine-cycle engine," Applied Energy, Elsevier, vol. 39(2), pages 93-116.
    8. Müller, Gerald & Parker, George, 2015. "Experimental investigation of the atmospheric steam engine with forced expansion," Renewable Energy, Elsevier, vol. 75(C), pages 348-355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarmiento, Nilsa & Belmonte, Silvina & Dellicompagni, Pablo & Franco, Judith & Escalante, Karina & Sarmiento, Joaquín, 2019. "A solar irradiation GIS as decision support tool for the Province of Salta, Argentina," Renewable Energy, Elsevier, vol. 132(C), pages 68-80.
    2. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    3. Chen, Hao & Zhao, Li & Cong, Haifeng & Li, Xingang, 2022. "Synthesis of waste heat recovery using solar organic Rankine cycle in the separation of benzene/toluene/p-xylene process," Energy, Elsevier, vol. 255(C).
    4. Dellicompagni, Pablo & Franco, Judith, 2019. "Potential uses of a prototype linear Fresnel concentration system," Renewable Energy, Elsevier, vol. 136(C), pages 1044-1054.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tenissara, Nopporn & Thepa, Sirichai & Monyakul, Veerapol, 2018. "Simulation, construction and evaluation of cheap piston expander for low-pressure power generation by compressed air as working fluid," Energy, Elsevier, vol. 142(C), pages 655-665.
    2. Bouvier, Jean-Louis & Lemort, Vincent & Michaux, Ghislain & Salagnac, Patrick & Kientz, Thiebaut, 2016. "Experimental study of an oil-free steam piston expander for micro-combined heat and power systems," Applied Energy, Elsevier, vol. 169(C), pages 788-798.
    3. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    4. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    5. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    6. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    7. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    8. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    9. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    10. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    11. Weiß, Andreas P. & Novotný, Václav & Popp, Tobias & Streit, Philipp & Špale, Jan & Zinn, Gerd & Kolovratník, Michal, 2020. "Customized ORC micro turbo-expanders - From 1D design to modular construction kit and prospects of additive manufacturing," Energy, Elsevier, vol. 209(C).
    12. Ziviani, Davide & Groll, Eckhard A. & Braun, James E. & De Paepe, Michel & van den Broek, Martijn, 2018. "Analysis of an organic Rankine cycle with liquid-flooded expansion and internal regeneration (ORCLFE)," Energy, Elsevier, vol. 144(C), pages 1092-1106.
    13. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2017. "Optimizing the performance of small-scale organic Rankine cycle that utilizes a single-screw expander," Applied Energy, Elsevier, vol. 189(C), pages 416-432.
    14. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    15. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    16. Antonelli, M. & Baccioli, A. & Francesconi, M. & Desideri, U. & Martorano, L., 2015. "Electrical production of a small size Concentrated Solar Power plant with compound parabolic collectors," Renewable Energy, Elsevier, vol. 83(C), pages 1110-1118.
    17. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2016. "Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery," Applied Energy, Elsevier, vol. 181(C), pages 155-170.
    18. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2017. "Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK," Applied Energy, Elsevier, vol. 186(P3), pages 291-303.
    19. Giuffrida, Antonio, 2018. "A theoretical study on the performance of a scroll expander in an organic Rankine cycle with hydrofluoroolefins (HFOs) in place of R245fa," Energy, Elsevier, vol. 161(C), pages 1172-1180.
    20. Lu, Yiji & Roskilly, Anthony Paul & Tang, Ke & Wang, Yaodong & Jiang, Long & Yuan, Ye & Wang, Liwei, 2017. "Investigation and performance study of a dual-source chemisorption power generation cycle using scroll expander," Applied Energy, Elsevier, vol. 204(C), pages 979-993.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:662-674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.