IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5842-d1212153.html
   My bibliography  Save this article

Hydropower Unit Commitment Using a Genetic Algorithm with Dynamic Programming

Author

Listed:
  • Shuangquan Liu

    (System Operation Department, Yunnan Power Grid Co., Ltd., 73# Tuodong Road, Kunming 650011, China)

  • Pengcheng Wang

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China)

  • Zifan Xu

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China)

  • Zhipeng Feng

    (Huaneng Lancang River Hydropower Inc., 1# Shijicheng Road, Kunming 650214, China)

  • Congtong Zhang

    (System Operation Department, Yunnan Power Grid Co., Ltd., 73# Tuodong Road, Kunming 650011, China)

  • Jinwen Wang

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
    Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China)

  • Cheng Chen

    (Faculty of Electric Engineering, Kunming University of Science and Technology, 727# Jingming South Road, Kunming 650500, China)

Abstract

This study presents a genetic algorithm integrated with dynamic programming to address the challenges of the hydropower unit commitment problem, which is a nonlinear, nonconvex, and discrete optimization, involving the hourly scheduling of generators in a hydropower system to maximize benefits and meet various constraints. The introduction of a progressive generating discharge allocation enhances the performance of dynamic programming in fitness evaluations, allowing for the fulfillment of various constraints, such as unit start-up times, shutdown/operating durations, and output ranges, thereby reducing complexity and improving the efficiency of the genetic algorithm. The application of the genetic algorithm with dynamic programming and progressive generating discharge allocation at the Manwan Hydropower Plant in Yunnan Province, China, showcases increased flexibility in outflow allocation, reducing spillages by 79%, and expanding high-efficiency zones by 43%.

Suggested Citation

  • Shuangquan Liu & Pengcheng Wang & Zifan Xu & Zhipeng Feng & Congtong Zhang & Jinwen Wang & Cheng Chen, 2023. "Hydropower Unit Commitment Using a Genetic Algorithm with Dynamic Programming," Energies, MDPI, vol. 16(15), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5842-:d:1212153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu Hu & Kan Yang & Lang Liu & Lyuwen Su & Zhe Yang, 2019. "Short-Term Hydropower Generation Scheduling Using an Improved Cloud Adaptive Quantum-Inspired Binary Social Spider Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2357-2379, May.
    2. Alireza Amani & Hosein Alizadeh, 2021. "Solving Hydropower Unit Commitment Problem Using a Novel Sequential Mixed Integer Linear Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1711-1729, April.
    3. Wang, Jinwen & Guo, Min & Liu, Yong, 2018. "Hydropower unit commitment with nonlinearity decoupled from mixed integer nonlinear problem," Energy, Elsevier, vol. 150(C), pages 839-846.
    4. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martín Montes Rivera & Carlos Guerrero-Mendez & Daniela Lopez-Betancur & Tonatiuh Saucedo-Anaya, 2024. "Dynamical Sphere Regrouping Particle Swarm Optimization Programming: An Automatic Programming Algorithm Avoiding Premature Convergence," Mathematics, MDPI, vol. 12(19), pages 1-53, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Yang & Kan Yang, 2021. "Short-Term Hydro Generation Scheduling of the Three Gorges Hydropower Station Using Improver Binary-coded Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3771-3790, September.
    2. Yang, Zhe & Wang, Yufeng & Yang, Kan, 2022. "The stochastic short-term hydropower generation scheduling considering uncertainty in load output forecasts," Energy, Elsevier, vol. 241(C).
    3. Wang, Yanling & Wen, Xin & Su, Huaying & Qin, Jisen & Kong, Linghui, 2023. "Real-time dispatch of hydro-photovoltaic (PV) hybrid system based on dynamic load reserve capacity," Energy, Elsevier, vol. 285(C).
    4. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    5. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    6. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    7. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    8. Cheng, Xianliang & Feng, Suzhen & Zheng, Hao & Wang, Jinwen & Liu, Shuangquan, 2022. "A hierarchical model in short-term hydro scheduling with unit commitment and head-dependency," Energy, Elsevier, vol. 251(C).
    9. Diaa Salman & Mehmet Kusaf, 2021. "Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty of Wind Power Forecasting," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    10. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    11. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    12. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    13. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    14. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    15. Li, Xiao & Liu, Pan & Cheng, Lei & Cheng, Qian & Zhang, Wei & Xu, Shitian & Zheng, Yalian, 2023. "Strategic bidding for a hydro-wind-photovoltaic hybrid system considering the profit beyond forecast time," Renewable Energy, Elsevier, vol. 204(C), pages 277-289.
    16. Yining Wang & Da Xie & Xitian Wang & Yu Zhang, 2018. "Prediction of Wind Turbine-Grid Interaction Based on a Principal Component Analysis-Long Short Term Memory Model," Energies, MDPI, vol. 11(11), pages 1-19, November.
    17. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    18. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    19. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    20. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5842-:d:1212153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.