IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp1291-1311.html
   My bibliography  Save this article

Simulation and analysis of vane-blade interaction in a two-stage high-pressure axial turbine

Author

Listed:
  • Touil, Kaddour
  • Ghenaiet, Adel

Abstract

The characterization of aerothermodynamic performance and components interactions are of great importance to improve the design of multi-stage axial turbines. The steady and unsteady flow simulations were carried out to investigate the performance maps and the vane-rotor interaction in a two-stage high-pressure (hp) axial turbine. The obtained results show that the expansion properties are controlled mainly by the first stage nozzle guide vane (NGV). Besides, the aerodynamic characteristics of the second stage vanes and blades are affected by the impingements of wakes from upstream stage, hence lesser isentropic efficiency compared with an isolated stage. Moreover, the secondary flows, tip leakage flow and vortices emanating from the first rotor are convected downstream, thereby inducing considerable flow deviations and losses. The clocking of vane/blade rows has revealed variations in aerodynamic loading and isentropic efficiency. Indeed, the maximum isentropic efficiency clocking position corresponds to upstream wakes close to the leading edge of second stage vanes, while the minimum efficiency clocking position corresponds to wakes passing midway. The unsteady flow computations and FFT analysis revealed different modes of components interaction identified in terms of the passing frequencies (BPF) of the two rotors and their combinations.

Suggested Citation

  • Touil, Kaddour & Ghenaiet, Adel, 2019. "Simulation and analysis of vane-blade interaction in a two-stage high-pressure axial turbine," Energy, Elsevier, vol. 172(C), pages 1291-1311.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1291-1311
    DOI: 10.1016/j.energy.2019.01.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219301136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Zhengping & Liu, Jingyuan & Zhang, Weihao & Wang, Peng, 2016. "Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines," Energy, Elsevier, vol. 103(C), pages 410-429.
    2. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    3. Gao, Jie & Zheng, Qun & Dong, Ping & Fu, Weiliang, 2017. "Effects of flow incidence on aerothermal performance of transonic blade tip clearance flows," Energy, Elsevier, vol. 139(C), pages 196-209.
    4. Zou, Zhengping & Shao, Fei & Li, Yiran & Zhang, Weihao & Berglund, Albin, 2017. "Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance," Energy, Elsevier, vol. 138(C), pages 167-184.
    5. Gao, Jie & Zheng, Qun & Jia, Xiaoquan, 2014. "Performance improvement of shrouded turbines with the management of casing endwall interaction flows," Energy, Elsevier, vol. 75(C), pages 430-442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fershalov, A. Yu & Fershalov, Yu. Ya & Fershalov, M. Yu, 2021. "Principles of designing gas microturbine stages," Energy, Elsevier, vol. 218(C).
    2. Zhou, Kai & Zheng, Xinqian, 2022. "Novel wave-shaped tip-shroud contours towards reducing turbine leakage loss," Energy, Elsevier, vol. 254(PA).
    3. Thanh Dam Mai & Jaiyoung Ryu, 2020. "Effects of Leading-Edge Modification in Damaged Rotor Blades on Aerodynamic Characteristics of High-Pressure Gas Turbine," Mathematics, MDPI, vol. 8(12), pages 1-21, December.
    4. Gong, Wenbin & Lei, Zhao & Nie, Shunpeng & Liu, Gaowen & Lin, Aqiang & Feng, Qing & Wang, Zhiwu, 2023. "A novel combined model for energy consumption performance prediction in the secondary air system of gas turbine engines based on flow resistance network," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadhim, Hakim T. & Rona, Aldo, 2018. "Off-design performance of a liquefied natural gas plant with an axial turbine of novel endwall design," Applied Energy, Elsevier, vol. 222(C), pages 830-839.
    2. Jeong, Jae Sung & Lee, Sang Woo, 2020. "Full aerodynamic loss data for efficient squealer tip design in an axial flow turbine," Energy, Elsevier, vol. 206(C).
    3. Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).
    4. Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
    5. Ketata, Ahmed & Driss, Zied, 2021. "Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission," Energy, Elsevier, vol. 236(C).
    6. Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
    7. Huang, Ming & Zhang, Kaiyuan & Li, Zhigang & Li, Jun, 2024. "Effect of multi-cavity on the aerothermal performance robustness of the squealer tip under geometric and operational uncertainties," Energy, Elsevier, vol. 287(C).
    8. Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
    9. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    10. Woosung Choi & Kanmaniraja Radhakrishnan & Nam-Ho Kim & Jun Su Park, 2021. "Multi-Fidelity Surrogate Models for Predicting Averaged Heat Transfer Coefficients on Endwall of Turbine Blades," Energies, MDPI, vol. 14(2), pages 1-15, January.
    11. Zou, Zhengping & Shao, Fei & Li, Yiran & Zhang, Weihao & Berglund, Albin, 2017. "Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance," Energy, Elsevier, vol. 138(C), pages 167-184.
    12. Zhou, Kai & Zheng, Xinqian, 2022. "Novel wave-shaped tip-shroud contours towards reducing turbine leakage loss," Energy, Elsevier, vol. 254(PA).
    13. Zhang, Zhongjie & Peng, Qikai & Liu, Riulin & Dong, Surong & Zhou, Guangmeng & Liu, Zengyong & Zhao, Xumin & Yang, Chunhao & Wang, Zengquan & Xia, Xu, 2024. "A matching method for Twin-VGT systems under varying expansion ratios at high altitudes," Energy, Elsevier, vol. 289(C).
    14. Leng, Ling & Qiu, Hongjian & Li, Xiannan & Zhong, Jie & Shi, Lei & Deng, Kangyao, 2022. "Effects on the transient energy distribution of turbocharging mode switching for marine diesel engines," Energy, Elsevier, vol. 249(C).
    15. Damian Joachimiak, 2021. "Novel Method of the Seal Aerodynamic Design to Reduce Leakage by Matching the Seal Geometry to Flow Conditions," Energies, MDPI, vol. 14(23), pages 1-16, November.
    16. Zhang, Mingjie & Yang, Jiangang & Zhang, Wanfu & Gu, Qianlei, 2024. "Turbomachines seal flow resistance enhancement and leakage reduction based on flow control method with bow-shaped auxiliary teeth," Energy, Elsevier, vol. 300(C).
    17. Shuai, Jiang & Jianyang, Yu & Hongwu, Wang & Fu, Chen & Shaowen, Chen & Yanping, Song, 2020. "Experimental investigation of the bending clearance on the aerodynamic performance in turbine blade tip region," Energy, Elsevier, vol. 197(C).
    18. Wang, Yabo & Yu, Jianyang & Song, Yanping & Chen, Fu, 2020. "Parameter optimization of the composite honeycomb tip in a turbine cascade," Energy, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1291-1311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.