IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i5p680-688.html
   My bibliography  Save this article

Reduction of irreversibility generation in sugar and ethanol production from sugarcane

Author

Listed:
  • Ensinas, A.V.
  • Modesto, M.
  • Nebra, S.A.
  • Serra, L.

Abstract

Sugarcane is one of the most important industries of the Brazilian economy, and its main products are sugar and ethanol. Most of the industrial plants produce both products in an integrated process, in which the sugarcane bagasse is a by-product that can be used as a fuel in the cogeneration system. The bagasse is used as the only fuel of the plant, supplying all energy required for the process, and also producing electricity surplus that may be sold to the grid. In this paper, exergy analysis is used to assess an integrated sugar and ethanol plant with its cogeneration system. The plant was divided into eight sub-systems to evaluate the irreversibility generation in each separately. Data from typical sugarcane factories in Brazil, which produce sugar and ethanol, were used in the process simulation. The analysis has shown that the sub-systems with the highest contribution for the total irreversibility generation of the plant were co-generation, juice extraction and fermentation. Some improvements are proposed, including process thermal integration and the introduction of more efficient equipments for prime mover and steam and electricity generation. The analysis indicated that the total irreversibility could be reduced by 10% should those changes be implemented.

Suggested Citation

  • Ensinas, A.V. & Modesto, M. & Nebra, S.A. & Serra, L., 2009. "Reduction of irreversibility generation in sugar and ethanol production from sugarcane," Energy, Elsevier, vol. 34(5), pages 680-688.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:5:p:680-688
    DOI: 10.1016/j.energy.2008.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208001424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    2. Tekin, Taner & Bayramoǧlu, Mahmut, 2001. "Exergy and structural analysis of raw juice production and steam-power units of a sugar production plant," Energy, Elsevier, vol. 26(3), pages 287-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Alves, Moises & Ponce, Gustavo H.S.F. & Silva, Maria Aparecida & Ensinas, Adriano V., 2015. "Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel," Energy, Elsevier, vol. 91(C), pages 751-757.
    3. Pina, Eduardo A. & Palacios-Bereche, Reynaldo & Chavez-Rodriguez, Mauro F. & Ensinas, Adriano V. & Modesto, Marcelo & Nebra, Silvia A., 2017. "Reduction of process steam demand and water-usage through heat integration in sugar and ethanol production from sugarcane – Evaluation of different plant configurations," Energy, Elsevier, vol. 138(C), pages 1263-1280.
    4. Milão, Raquel de Freitas D. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2021. "Second Law analysis of large-scale sugarcane-ethanol biorefineries with alternative distillation schemes: Bioenergy carbon capture scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Santos, V.E.N. & Ely, R.N. & Szklo, A.S. & Magrini, A., 2016. "Chemicals, electricity and fuels from biorefineries processing Brazil׳s sugarcane bagasse: Production recipes and minimum selling prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1443-1458.
    6. Aghbashlo, Mortaza & Tabatabaei, Meisam & Karimi, Keikhosro, 2016. "Exergy-based sustainability assessment of ethanol production via Mucor indicus from fructose, glucose, sucrose, and molasses," Energy, Elsevier, vol. 98(C), pages 240-252.
    7. Dias, Marina O.S. & Junqueira, Tassia L. & Jesus, Charles D.F. & Rossell, Carlos E.V. & Maciel Filho, Rubens & Bonomi, Antonio, 2012. "Improving second generation ethanol production through optimization of first generation production process from sugarcane," Energy, Elsevier, vol. 43(1), pages 246-252.
    8. Velásquez-Arredondo, H.I. & Ruiz-Colorado, A.A. & De Oliveira, S., 2010. "Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis," Energy, Elsevier, vol. 35(7), pages 3081-3087.
    9. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    10. Milão, Raquel de Freitas Dias & Carminati, Hudson B. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Thermodynamic, financial and resource assessments of a large-scale sugarcane-biorefinery: Prelude of full bioenergy carbon capture and storage scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Morandin, Matteo & Toffolo, Andrea & Lazzaretto, Andrea & Maréchal, François & Ensinas, Adriano V. & Nebra, Silvia A., 2011. "Synthesis and parameter optimization of a combined sugar and ethanol production process integrated with a CHP system," Energy, Elsevier, vol. 36(6), pages 3675-3690.
    12. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    13. Fukushima, Nilton Asao & Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2019. "Energy analysis of the ethanol industry considering vinasse concentration and incineration," Renewable Energy, Elsevier, vol. 142(C), pages 96-109.
    14. João Paulo Guerra & Fernando Henrique Cardoso & Alex Nogueira & Luiz Kulay, 2018. "Thermodynamic and Environmental Analysis of Scaling up Cogeneration Units Driven by Sugarcane Biomass to Enhance Power Exports," Energies, MDPI, vol. 11(1), pages 1-23, January.
    15. Carminati, Hudson Bolsoni & Milão, Raquel de Freitas D. & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2019. "Bioenergy and full carbon dioxide sinking in sugarcane-biorefinery with post-combustion capture and storage: Techno-economic feasibility," Applied Energy, Elsevier, vol. 254(C).
    16. Dogbe, Eunice Sefakor & Mandegari, Mohsen A. & Görgens, Johann F., 2018. "Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process," Energy, Elsevier, vol. 145(C), pages 614-625.
    17. Vasconcelos, Marcelo Holanda & Mendes, Fernanda Machado & Ramos, Lucas & Dias, Marina Oliveira S. & Bonomi, Antonio & Jesus, Charles Dayan F. & Watanabe, Marcos Djun B. & Junqueira, Tassia Lopes & Mil, 2020. "Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment," Energy, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    2. Kwak, H.-Y. & Kim, D.-J. & Jeon, J.-S., 2003. "Exergetic and thermoeconomic analyses of power plants," Energy, Elsevier, vol. 28(4), pages 343-360.
    3. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    4. Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.
    5. Tonon, S. & Brown, M.T. & Luchi, F. & Mirandola, A. & Stoppato, A. & Ulgiati, S., 2006. "An integrated assessment of energy conversion processes by means of thermodynamic, economic and environmental parameters," Energy, Elsevier, vol. 31(1), pages 149-163.
    6. Lozano, Miguel A. & Serra, Luis M. & Pina, Eduardo A., 2022. "Optimal design of trigeneration systems for buildings considering cooperative game theory for allocating production cost to energy services," Energy, Elsevier, vol. 261(PB).
    7. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
    8. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    9. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    10. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    11. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    12. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    13. Massardo, A.F. & Santarelli, M. & Borchiellini, R., 2003. "Carbon exergy tax (CET): its impact on conventional energy system design and its contribution to advanced systems utilisation," Energy, Elsevier, vol. 28(7), pages 607-625.
    14. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    15. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Exergy cost allocation method based on energy level (ECAEL) for a CCHP system," Energy, Elsevier, vol. 134(C), pages 240-247.
    16. Uran, V., 2006. "Optimization system for combined heat and electricity production in the wood-processing industry," Energy, Elsevier, vol. 31(14), pages 2996-3016.
    17. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    18. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    19. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    20. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Modified exergoeconomic modeling of geothermal power plants," Energy, Elsevier, vol. 36(11), pages 6358-6366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:5:p:680-688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.