IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip1p804-817.html
   My bibliography  Save this article

A three-dimensional simulation of discrete combustion of randomly dispersed micron-aluminum particle dust cloud and applying genetic algorithm to obtain the flame front

Author

Listed:
  • Bidabadi, Mehdi
  • Bozorg, Mehdi Vahabzadeh
  • Bordbar, Vahid

Abstract

Discrete combustion of micron-sized aluminum particle dust cloud in air was investigated by a three-dimensional simulation. In light of presence of radiation and conduction heat transfer mechanisms, simulations became more realistic. Particles were randomly dispersed within a rectangular control volume using two different methods. An average flame front speed was obtained at each particle concentration using both methods. The second method yielded more accurate average flame front velocities. At lower dust concentrations, the results were in a good agreement with experimental outcomes. In the control volume composed of particles distributed using the second method, flame front was approximated with a fitted surface obtained via genetic algorithm. The temperature profiles of four random particles were plotted to provide insight into preheating time order of unburned particles. Later, the effect of particle diameters on flame front velocities was demonstrated. In the end, the flammability lean limit, as a significant parameter in safety issues, was calculated for different particle diameters.

Suggested Citation

  • Bidabadi, Mehdi & Bozorg, Mehdi Vahabzadeh & Bordbar, Vahid, 2017. "A three-dimensional simulation of discrete combustion of randomly dispersed micron-aluminum particle dust cloud and applying genetic algorithm to obtain the flame front," Energy, Elsevier, vol. 140(P1), pages 804-817.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:804-817
    DOI: 10.1016/j.energy.2017.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217315487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bidabadi, Mehdi & Amrollahy Biouki, Saeed & Yaghoubi, Ebrahim & Rouboa, Abel & Khoeini Poorfar, Alireza & Mohebbi, Mohammad, 2016. "Reaction-diffusion fronts of aluminum dust cloud in a system of random discrete sources," Energy, Elsevier, vol. 107(C), pages 639-647.
    2. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bozorg, Mehdi Vahabzadeh & Doranehgard, Mohammad Hossein & Hong, Kun & Xiong, Qingang & Li, Larry K.B., 2020. "A numerical study on discrete combustion of polydisperse magnesium aero-suspensions," Energy, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    2. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    3. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    4. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    5. Debiagi, P. & Rocha, R.C. & Scholtissek, A. & Janicka, J. & Hasse, C., 2022. "Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Bozorg, Mehdi Vahabzadeh & Doranehgard, Mohammad Hossein & Hong, Kun & Xiong, Qingang & Li, Larry K.B., 2020. "A numerical study on discrete combustion of polydisperse magnesium aero-suspensions," Energy, Elsevier, vol. 194(C).
    7. Choi, Dongho & Oh, Jeong-Ik & Baek, Kitae & Lee, Jechan & Kwon, Eilhann E., 2018. "Compositional modification of products from Co-Pyrolysis of chicken manure and biomass by shifting carbon distribution from pyrolytic oil to syngas using CO2," Energy, Elsevier, vol. 153(C), pages 530-538.
    8. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    9. Maas, Pascal & Schiemann, Martin & Scherer, Viktor & Fischer, Peter & Taroata, Dan & Schmid, Günther, 2018. "Lithium as energy carrier: CFD simulations of LI combustion in a 100MW slag tap furnace," Applied Energy, Elsevier, vol. 227(C), pages 506-515.
    10. Bennett, Carly & Blanchet, Jocelyn & Trowell, Keena & Bergthorson, Jeffrey, 2023. "Decarbonizing Canada’s energy supply and exports with solar PV and e-fuels," Renewable Energy, Elsevier, vol. 217(C).
    11. Dehhaghi, Mona & Kazemi Shariat Panahi, Hamed & Aghbashlo, Mortaza & Lam, Su Shiung & Tabatabaei, Meisam, 2021. "The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts," Energy, Elsevier, vol. 225(C).
    12. Julien Pedneault & Guillaume Majeau‐Bettez & Manuele Margni, 2023. "How much sorting is required for a circular low carbon aluminum economy?," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 977-992, June.
    13. Neumann, Jannik & Fradet, Quentin & Scholtissek, Arne & Dammel, Frank & Riedel, Uwe & Dreizler, Andreas & Hasse, Christian & Stephan, Peter, 2024. "Thermodynamic assessment of an iron-based circular energy economy for carbon-free power supply," Applied Energy, Elsevier, vol. 368(C).
    14. Schiemann, Martin & Bergthorson, Jeffrey & Fischer, Peter & Scherer, Viktor & Taroata, Dan & Schmid, Günther, 2016. "A review on lithium combustion," Applied Energy, Elsevier, vol. 162(C), pages 948-965.
    15. Garra, Patxi & Leyssens, Gontrand & Allgaier, Olivier & Schönnenbeck, Cornelius & Tschamber, Valérie & Brilhac, Jean-François & Tahtouh, Toni & Guézet, Olivier & Allano, Sylvain, 2017. "Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions," Applied Energy, Elsevier, vol. 189(C), pages 578-587.
    16. Mohammadmahdi Sohrabi & Barat Ghobadian & Gholamhassan Najafi & Willie Prasidha & Mohammadreza Baigmohammadi & Philip de Goey, 2024. "Experimental and Statistical Analysis of Iron Powder for Green Heat Production," Sustainability, MDPI, vol. 16(21), pages 1-15, October.
    17. Zhang, Jiarui & Xia, Zhixun & Ma, Likun & Huang, Liya & Feng, Yunchao & Yang, Dali, 2021. "Experimental study on aluminum particles combustion in a turbulent jet," Energy, Elsevier, vol. 214(C).
    18. Laraqui, Driss & Leyssens, Gontrand & Schonnenbeck, Cornelius & Allgaier, Olivier & Lomba, Ricardo & Dumand, Clément & Brilhac, Jean-François, 2020. "Heat recovery and metal oxide particles trapping in a power generation system using a swirl-stabilized metal-air burner," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:804-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.