IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v165y2022ics1364032122004750.html
   My bibliography  Save this article

Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants

Author

Listed:
  • Debiagi, P.
  • Rocha, R.C.
  • Scholtissek, A.
  • Janicka, J.
  • Hasse, C.

Abstract

As a result of the 2021 United Nations Climate Change Conference (COP26), several countries committed to phasing down coal electricity as soon as possible, deactivating hundreds of power plants in the near future. CO2-free electricity can be generated in these plants by retrofitting them for iron combustion. Iron oxides produced during the process can be collected and reduced back to metallic iron using H2, in a circular process where it becomes an energy carrier. Using clean energy in the recycling process enables storage and distribution of excess generated in periods of abundance. This concept uses and scales up existing dry metal cycle technologies, which are the focus of extensive research worldwide. Retrofitting is evaluated here to determine feasibility of adding these material requirements to markets, in the context of current plans for decarbonization of steel industry, and policies on hydrogen and renewable electricity. Results indicate that not only for a single power plant, but also on larger scales, the retrofitting plan is viable, promoting and supporting advancements in sustainable electricity, steel industry and hydrogen production, converging necessary technological and construction efforts. The maturation and first commercial-scale application of iron combustion technology by 2030, together with developing necessary reduction infrastructure over the next decades, would pave the way for large-scale retrofitting and support the phasing out of coal in many regions. The proposed plan represents a feasible solution that takes advantage of existing assets, creates a long-lasting legacy for the industry and establishes circular energy economies that increase local energy security.

Suggested Citation

  • Debiagi, P. & Rocha, R.C. & Scholtissek, A. & Janicka, J. & Hasse, C., 2022. "Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122004750
    DOI: 10.1016/j.rser.2022.112579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122004750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christiane Niether & Stéphane Faure & Alexis Bordet & Jonathan Deseure & Marian Chatenet & Julian Carrey & Bruno Chaudret & Alain Rouet, 2018. "Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles," Nature Energy, Nature, vol. 3(6), pages 476-483, June.
    2. Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.
    3. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    4. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Mitigation of wind power intermittency: Storage technology approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 447-456.
    5. Auner, Norbert & Holl, Sven, 2006. "Silicon as energy carrier—Facts and perspectives," Energy, Elsevier, vol. 31(10), pages 1395-1402.
    6. Farooq Sher & Oliver Curnick & Mohammad Tazli Azizan, 2021. "Sustainable Conversion of Renewable Energy Sources," Sustainability, MDPI, vol. 13(5), pages 1-4, March.
    7. Xiao-Guang Yang & Teng Liu & Chao-Yang Wang, 2021. "Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles," Nature Energy, Nature, vol. 6(2), pages 176-185, February.
    8. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    9. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    2. Wang, Bo & Wang, Jianda & Dong, Kangyin & Dong, Xiucheng, 2023. "Is the digital economy conducive to the development of renewable energy in Asia?," Energy Policy, Elsevier, vol. 173(C).
    3. Diana Carolina Guío-Pérez & Guillermo Martinez Castilla & David Pallarès & Henrik Thunman & Filip Johnsson, 2023. "Thermochemical Energy Storage with Integrated District Heat Production–A Case Study of Sweden," Energies, MDPI, vol. 16(3), pages 1-26, January.
    4. Adam Smoliński & Dmyto Malashkevych & Mykhailo Petlovanyi & Kanay Rysbekov & Vasyl Lozynskyi & Kateryna Sai, 2022. "Research into Impact of Leaving Waste Rocks in the Mined-Out Space on the Geomechanical State of the Rock Mass Surrounding the Longwall Face," Energies, MDPI, vol. 15(24), pages 1-16, December.
    5. Friedrich Plank & Johannes Muntschick & Arne Niemann & Michèle Knodt, 2023. "External Hydrogen Relations of the European Union: Framing Processes in the Public Discourse Towards and within Partner Countries," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    6. Neumann, Jannik & Fradet, Quentin & Scholtissek, Arne & Dammel, Frank & Riedel, Uwe & Dreizler, Andreas & Hasse, Christian & Stephan, Peter, 2024. "Thermodynamic assessment of an iron-based circular energy economy for carbon-free power supply," Applied Energy, Elsevier, vol. 368(C).
    7. Xiong, Yu & Kong, Dezhong & Song, Gaofeng, 2024. "Research hotspots and development trends of green coal mining: Exploring the path to sustainable development of coal mines," Resources Policy, Elsevier, vol. 92(C).
    8. Georgi Todorov & Ivan Kralov & Ivailo Koprev & Hristo Vasilev & Iliyana Naydenova, 2024. "Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective," Energies, MDPI, vol. 17(4), pages 1-25, February.
    9. Jansen, Erik & Schuler, Julia & Ardone, Armin & Slednev, Viktor & Fichtner, Wolf & Pfetsch, Marc E., 2023. "Global logistics of an iron-based energy network: A case study of retrofitting german coal power plants," Working Paper Series in Production and Energy 70, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maas, Pascal & Schiemann, Martin & Scherer, Viktor & Fischer, Peter & Taroata, Dan & Schmid, Günther, 2018. "Lithium as energy carrier: CFD simulations of LI combustion in a 100MW slag tap furnace," Applied Energy, Elsevier, vol. 227(C), pages 506-515.
    2. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    3. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    4. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    5. Bozorg, Mehdi Vahabzadeh & Doranehgard, Mohammad Hossein & Hong, Kun & Xiong, Qingang & Li, Larry K.B., 2020. "A numerical study on discrete combustion of polydisperse magnesium aero-suspensions," Energy, Elsevier, vol. 194(C).
    6. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    8. Neumann, Jannik & Fradet, Quentin & Scholtissek, Arne & Dammel, Frank & Riedel, Uwe & Dreizler, Andreas & Hasse, Christian & Stephan, Peter, 2024. "Thermodynamic assessment of an iron-based circular energy economy for carbon-free power supply," Applied Energy, Elsevier, vol. 368(C).
    9. Schiemann, Martin & Bergthorson, Jeffrey & Fischer, Peter & Scherer, Viktor & Taroata, Dan & Schmid, Günther, 2016. "A review on lithium combustion," Applied Energy, Elsevier, vol. 162(C), pages 948-965.
    10. Garra, Patxi & Leyssens, Gontrand & Allgaier, Olivier & Schönnenbeck, Cornelius & Tschamber, Valérie & Brilhac, Jean-François & Tahtouh, Toni & Guézet, Olivier & Allano, Sylvain, 2017. "Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions," Applied Energy, Elsevier, vol. 189(C), pages 578-587.
    11. Mohammadmahdi Sohrabi & Barat Ghobadian & Gholamhassan Najafi & Willie Prasidha & Mohammadreza Baigmohammadi & Philip de Goey, 2024. "Experimental and Statistical Analysis of Iron Powder for Green Heat Production," Sustainability, MDPI, vol. 16(21), pages 1-15, October.
    12. Zhang, Jiarui & Xia, Zhixun & Ma, Likun & Huang, Liya & Feng, Yunchao & Yang, Dali, 2021. "Experimental study on aluminum particles combustion in a turbulent jet," Energy, Elsevier, vol. 214(C).
    13. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    14. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    15. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    17. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    18. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    19. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    20. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122004750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.