IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220319964.html
   My bibliography  Save this article

Experimental study on aluminum particles combustion in a turbulent jet

Author

Listed:
  • Zhang, Jiarui
  • Xia, Zhixun
  • Ma, Likun
  • Huang, Liya
  • Feng, Yunchao
  • Yang, Dali

Abstract

In this study, experimental investigation on the aluminum particles turbulent jet flame is carried out. The fluidized aluminum particles ignite and burn in the post-flame environment supported by a premixed flat flame burner. High-speed camera and Mie scattering technique are employed to photograph the flame structure. The jet flame is divided into a preheating zone, a flame zone and a burnout zone based on the self-luminous intensity. In the upstream region of the flame, aluminum particles spread into the hot coflow and need to be heated within a certain distance to be ignited. In the flame region, typical characteristics of a single aluminum particle combustion, including condensation trail and particle rotation are observed using a high magnification zoom lens. The average image of the jet flame indicates that the condensed combustion products are mainly distributed in a thin region at the periphery of the particle clouds. Moreover, the temperature of condensed phase emitters in the flame is derived by fitting Planck’s law, and the results show that increasing the oxidizing ability of the environments can significantly improve the flame temperature and reduce the lift-off height and visible length of the jet flame, but has little influence on the flame structure.

Suggested Citation

  • Zhang, Jiarui & Xia, Zhixun & Ma, Likun & Huang, Liya & Feng, Yunchao & Yang, Dali, 2021. "Experimental study on aluminum particles combustion in a turbulent jet," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319964
    DOI: 10.1016/j.energy.2020.118889
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220319964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Yunchao & Xia, Zhixun & Huang, Liya & Ma, Likun, 2018. "Effect of ambient temperature on the ignition and combustion process of single aluminium particles," Energy, Elsevier, vol. 162(C), pages 618-629.
    2. Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.
    3. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    4. Feng, Yunchao & Ma, Likun & Xia, Zhixun & Huang, Liya & Yang, Dali, 2020. "Ignition and combustion characteristics of single gas-atomized Al–Mg alloy particles in oxidizing gas flow," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sicong Xi & Hongyan Li & Kai Ma & Yingying Lu & Wenxiong Xi, 2023. "Study on the Transformation of Combustion Mechanism and Ejection Phenomenon of Aluminum Particles in Methane Flame," Energies, MDPI, vol. 16(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    2. Maas, Pascal & Schiemann, Martin & Scherer, Viktor & Fischer, Peter & Taroata, Dan & Schmid, Günther, 2018. "Lithium as energy carrier: CFD simulations of LI combustion in a 100MW slag tap furnace," Applied Energy, Elsevier, vol. 227(C), pages 506-515.
    3. Schiemann, Martin & Bergthorson, Jeffrey & Fischer, Peter & Scherer, Viktor & Taroata, Dan & Schmid, Günther, 2016. "A review on lithium combustion," Applied Energy, Elsevier, vol. 162(C), pages 948-965.
    4. Garra, Patxi & Leyssens, Gontrand & Allgaier, Olivier & Schönnenbeck, Cornelius & Tschamber, Valérie & Brilhac, Jean-François & Tahtouh, Toni & Guézet, Olivier & Allano, Sylvain, 2017. "Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions," Applied Energy, Elsevier, vol. 189(C), pages 578-587.
    5. Debiagi, P. & Rocha, R.C. & Scholtissek, A. & Janicka, J. & Hasse, C., 2022. "Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    7. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    8. Tsai, Yun-Ting & Yang, Yi & Pan, Yong & Shu, Chi-Min, 2023. "Catalytic effects of magnesium-transition metal (Fe and Ni) hydrides on oxygen and nitrogen reduction: A case study of explosive characteristics and their environmental contaminants," Energy, Elsevier, vol. 280(C).
    9. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    10. Wang, Hongqi & Wang, Zhi & Shi, Zhihao & Gong, Xuzhong & Cao, Jianwei & Wang, Mingyong, 2017. "Facile hydrogen production from Al-water reaction promoted by choline hydroxide," Energy, Elsevier, vol. 131(C), pages 98-105.
    11. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
    12. Gai, Wei-Zhuo & Deng, Zhen-Yan, 2024. "Enhanced hydrogen production from Al-water reaction: Strategies, performances, mechanisms and applications," Renewable Energy, Elsevier, vol. 226(C).
    13. Haller, Michel Y. & Amstad, Dominik & Dudita, Mihaela & Englert, Alexander & Häberle, Andreas, 2021. "Combined heat and power production based on renewable aluminium-water reaction," Renewable Energy, Elsevier, vol. 174(C), pages 879-893.
    14. Yang, Weijuan & Zhang, Tianyou & Zhou, Junhu & Shi, Wei & Liu, Jianzhong & Cen, Kefa, 2015. "Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction," Energy, Elsevier, vol. 88(C), pages 537-543.
    15. Choi, Dongho & Oh, Jeong-Ik & Baek, Kitae & Lee, Jechan & Kwon, Eilhann E., 2018. "Compositional modification of products from Co-Pyrolysis of chicken manure and biomass by shifting carbon distribution from pyrolytic oil to syngas using CO2," Energy, Elsevier, vol. 153(C), pages 530-538.
    16. Bennett, Carly & Blanchet, Jocelyn & Trowell, Keena & Bergthorson, Jeffrey, 2023. "Decarbonizing Canada’s energy supply and exports with solar PV and e-fuels," Renewable Energy, Elsevier, vol. 217(C).
    17. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    18. Zandie, Mohammad & Ng, Hoon Kiat & Gan, Suyin & Muhamad Said, Mohd Farid & Cheng, Xinwei, 2022. "A comprehensive CFD study of the spray combustion, soot formation and emissions of ternary mixtures of diesel, biodiesel and gasoline under compression ignition engine-relevant conditions," Energy, Elsevier, vol. 260(C).
    19. Roberto Ercoli & Andrea Orlando & Daniele Borrini & Franco Tassi & Gabriele Bicocchi & Alberto Renzulli, 2021. "Hydrogen-Rich Gas Produced by the Chemical Neutralization of Reactive By-Products from the Screening Processes of the Secondary Aluminum Industry," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    20. Laraqui, Driss & Leyssens, Gontrand & Schonnenbeck, Cornelius & Allgaier, Olivier & Lomba, Ricardo & Dumand, Clément & Brilhac, Jean-François, 2020. "Heat recovery and metal oxide particles trapping in a power generation system using a swirl-stabilized metal-air burner," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.