IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v138y2017icp542-551.html
   My bibliography  Save this article

A high efficient semi-open system for fresh water production from atmosphere

Author

Listed:
  • Wang, J.Y.
  • Wang, R.Z.
  • Wang, L.W.
  • Liu, J.Y.

Abstract

A high efficient semi-open system of fresh water production is established with novel consolidated composite sorbent. This device collects 14.7 kg of water with packing 40.8 kg of consolidating sorbents in 0.4 × 0.4 × 0.6 m size of sorbent bed. The consolidated active carbon felt combined with LiCl sorbent and its corrugated filling mode are invented, which has large cycle sorption quantity, excellent heat transfer performance, and enough mass transfer channels. The sorption and desorption performances of device are tested at different experiments conditions. In sorption process, 14.7 kg, 13.6 kg, and 12.5 kg fresh water is obtained under the condition of 85%, 75%, and 65% RH; while in desorption process, 14.5 kg, 13.6 kg and 0 kg water is got under the condition of 90 °C, 77 °C, and 60 °C respectively. This appliance ensures the large adsorbing capacity at 23 °C and 90% RH, and achieves a large amount of desorption (0.65 g/g) between 70 and 80 °C with 8.8 Pa flow resistance. The pressure drop and velocity distribution of the actual operation in the unit structure of sorbent bed are simulated, and the water mass is calculated to analyze the sorption and desorption performances of the device.

Suggested Citation

  • Wang, J.Y. & Wang, R.Z. & Wang, L.W. & Liu, J.Y., 2017. "A high efficient semi-open system for fresh water production from atmosphere," Energy, Elsevier, vol. 138(C), pages 542-551.
  • Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:542-551
    DOI: 10.1016/j.energy.2017.07.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217312847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Qun & Chen, Haijun & Tao, Gang & Yao, Huqing, 2005. "Performance study of new adsorbent for solid desiccant cooling," Energy, Elsevier, vol. 30(2), pages 273-279.
    2. Kabeel, A.E., 2007. "Water production from air using multi-shelves solar glass pyramid system," Renewable Energy, Elsevier, vol. 32(1), pages 157-172.
    3. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    4. Gad, H.E & Hamed, A.M & El-Sharkawy, I.I, 2001. "Application of a solar desiccant/collector system for water recovery from atmospheric air," Renewable Energy, Elsevier, vol. 22(4), pages 541-556.
    5. Hassan, H.Z. & Mohamad, A.A., 2013. "Thermodynamic analysis and theoretical study of a continuous operation solar-powered adsorption refrigeration system," Energy, Elsevier, vol. 61(C), pages 167-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    2. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Maher, Hisham & Rupam, Tahmid Hasan & Rocky, Kaiser Ahmed & Bassiouny, Ramadan & Saha, Bidyut Baran, 2022. "Silica gel-MIL 100(Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester," Energy, Elsevier, vol. 238(PB).
    4. Wang, Wenwen & Xie, Sitao & Pan, Quanwen & Dai, Yanjun & Wang, Ruzhu & Ge, Tianshu, 2021. "Air-cooled adsorption-based device for harvesting water from island air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Pokorny, Nikola & Shemelin, Viacheslav & Novotny, Jiri, 2022. "Experimental study and performance analysis of a mobile autonomous atmospheric water generator designed for arid climatic conditions," Energy, Elsevier, vol. 250(C).
    6. Wang, J.Y. & Wang, R.Z. & Tu, Y.D. & Wang, L.W., 2018. "Universal scalable sorption-based atmosphere water harvesting," Energy, Elsevier, vol. 165(PA), pages 387-395.
    7. Tu, Rang & Hwang, Yunho, 2020. "Reviews of atmospheric water harvesting technologies," Energy, Elsevier, vol. 201(C).
    8. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    9. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
    10. Chen, Zhihui & Deng, Fangfang & Yang, Xinge & Shao, Zhao & Du, Shuai & Wang, Ruzhu, 2024. "Highly efficient portable atmospheric water harvester with integrated structure design for high yield water production," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Ghonemy, A.M.K., 2012. "Fresh water production from/by atmospheric air for arid regions, using solar energy: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6384-6422.
    2. William, G.E. & Mohamed, M.H. & Fatouh, M., 2015. "Desiccant system for water production from humid air using solar energy," Energy, Elsevier, vol. 90(P2), pages 1707-1720.
    3. Husam S. Al-Duais & Muhammad Azzam Ismail & Zakaria Alcheikh Mahmoud Awad & Karam M. Al-Obaidi, 2022. "Performance Evaluation of Solar-Powered Atmospheric Water Harvesting Using Different Glazing Materials in the Tropical Built Environment: An Experimental Study," Energies, MDPI, vol. 15(9), pages 1-19, April.
    4. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    5. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Ramzy, Ahmed K. & Kadoli, Ravikiran & T.P., Ashok Babu, 2013. "Experimental and theoretical investigations on the cyclic operation of TSA cycle for air dehumidification using packed beds of silica gel particles," Energy, Elsevier, vol. 56(C), pages 8-24.
    7. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    8. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    10. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    11. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Hwang, Won-Baek & Choi, Sun & Lee, Dae-Young, 2017. "In-depth analysis of the performance of hybrid desiccant cooling system incorporated with an electric heat pump," Energy, Elsevier, vol. 118(C), pages 324-332.
    13. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    14. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    15. Wang, Cong & Yang, Bianfeng & Ji, Xu & Zhang, Ren & Wu, Hailong, 2022. "Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification," Energy, Elsevier, vol. 251(C).
    16. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Elnagar, Essam & Pezzutto, Simon & Duplessis, Bruno & Fontenaille, Théodore & Lemort, Vincent, 2023. "A comprehensive scouting of space cooling technologies in Europe: Key characteristics and development trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    18. Hassan, H.Z. & Mohamad, A.A. & Al-Ansary, H.A. & Alyousef, Y.M., 2014. "Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle," Energy, Elsevier, vol. 77(C), pages 852-858.
    19. Wang, H.H. & Ge, T.S. & Zhang, X.L. & Zhao, Y., 2016. "Experimental investigation on solar powered self-cooled cooling system based on solid desiccant coated heat exchanger," Energy, Elsevier, vol. 96(C), pages 176-186.
    20. Ge, Lurong & Feng, Yaohui & Wu, Jiarong & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of MIL-101(Cr) based desiccant-coated heat exchangers for efficient dehumidification," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:138:y:2017:i:c:p:542-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.