IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v186y2023ics1364032123004938.html
   My bibliography  Save this article

A comprehensive scouting of space cooling technologies in Europe: Key characteristics and development trends

Author

Listed:
  • Elnagar, Essam
  • Pezzutto, Simon
  • Duplessis, Bruno
  • Fontenaille, Théodore
  • Lemort, Vincent

Abstract

This paper presents a comprehensive taxonomy and assessment of existing and emerging space cooling technologies in Europe. The study aims to categorize 32 alternative space cooling technologies based on eight scouting parameters (physical energy form, basic working/operating principle, refrigerant or heat transfer medium, phase of the working fluid, specific physical process/device, type of space cooling technology, fuel type and technology readiness level) and evaluate their key characteristics and development trends. The increasing demand for space cooling in Europe necessitates a thorough understanding of these technologies and their potential for energy efficiency. The majority of space cooling demand in Europe is currently met by conventional vapour compression systems, while a small portion is covered by thermally-driven heat pumps. The study reveals that several alternative space cooling technologies show promise for energy-efficient cooling but are not yet competitive with vapour compression systems in terms of efficiency and cost in the short-term and medium-term. However, technologies such as membrane heat pumps, thermionic systems, thermotunnel systems, and evaporative liquid desiccant systems demonstrate cost-competitiveness and energy efficiency in specific applications. The findings highlight the need for further research and development to improve the efficiency, costs, and market competitiveness of alternative space cooling technologies. The study also emphasizes the importance of policy support and the urgency to reduce greenhouse gas emissions, which can drive the adoption and advancement of sustainable cooling solutions.

Suggested Citation

  • Elnagar, Essam & Pezzutto, Simon & Duplessis, Bruno & Fontenaille, Théodore & Lemort, Vincent, 2023. "A comprehensive scouting of space cooling technologies in Europe: Key characteristics and development trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123004938
    DOI: 10.1016/j.rser.2023.113636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lanbo Lai & Xiaolin Wang & Gholamreza Kefayati & Eric Hu, 2021. "Evaporative Cooling Integrated with Solid Desiccant Systems: A Review," Energies, MDPI, vol. 14(18), pages 1-23, September.
    2. Elnagar, Essam & Zeoli, Alanis & Rahif, Ramin & Attia, Shady & Lemort, Vincent, 2023. "A qualitative assessment of integrated active cooling systems: A review with a focus on system flexibility and climate resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Guo, Jinyi & Bilbao, Jose I. & Sproul, Alistair B., 2020. "A novel solar cooling cycle – A ground coupled PV/T desiccant cooling (GPVTDC) system with low heat source temperatures," Renewable Energy, Elsevier, vol. 162(C), pages 1273-1284.
    4. Labban, Omar & Chen, Tianyi & Ghoniem, Ahmed F. & Lienhard, John H. & Norford, Leslie K., 2017. "Next-generation HVAC: Prospects for and limitations of desiccant and membrane-based dehumidification and cooling," Applied Energy, Elsevier, vol. 200(C), pages 330-346.
    5. Eicker, Ursula & Pietruschka, Dirk & Haag, Maximilian & Schmitt, Andreas, 2015. "Systematic design and analysis of solar thermal cooling systems in different climates," Renewable Energy, Elsevier, vol. 80(C), pages 827-836.
    6. Simon Pezzutto & Matteo De Felice & Reza Fazeli & Lukas Kranzl & Stefano Zambotti, 2017. "Status Quo of the Air-Conditioning Market in Europe: Assessment of the Building Stock," Energies, MDPI, vol. 10(9), pages 1-17, August.
    7. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    8. Kalkan, Naci & Young, E.A. & Celiktas, Ahmet, 2012. "Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6352-6383.
    9. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    10. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    11. Simon Pezzutto & Silvia Croce & Stefano Zambotti & Lukas Kranzl & Antonio Novelli & Pietro Zambelli, 2019. "Assessment of the Space Heating and Domestic Hot Water Market in Europe—Open Data and Results," Energies, MDPI, vol. 12(9), pages 1-16, May.
    12. Allouhi, A. & Kousksou, T. & Jamil, A. & Bruel, P. & Mourad, Y. & Zeraouli, Y., 2015. "Solar driven cooling systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 159-181.
    13. Ibsaine, Rabah & Joffroy, Jean-Marc & Stouffs, Pascal, 2016. "Modelling of a new thermal compressor for supercritical CO2 heat pump," Energy, Elsevier, vol. 117(P2), pages 530-539.
    14. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Eric Wilczynski, 2022. "Screening of Cooling Technologies in Europe: Alternatives to Vapour Compression and Possible Market Developments," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa Christodoulaki & Vassiliki Drosou & Agis Papadopoulos, 2024. "Political, Economic, Social, Technical, Environmental and Legal Analysis of the Hellenic Heating and Cooling Sector," Energies, MDPI, vol. 17(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elnagar, Essam & Zeoli, Alanis & Rahif, Ramin & Attia, Shady & Lemort, Vincent, 2023. "A qualitative assessment of integrated active cooling systems: A review with a focus on system flexibility and climate resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    3. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    5. Palomba, Valeria & Vasta, Salvatore & Freni, Angelo & Pan, Quanwen & Wang, Ruzhu & Zhai, Xiaoqiang, 2017. "Increasing the share of renewables through adsorption solar cooling: A validated case study," Renewable Energy, Elsevier, vol. 110(C), pages 126-140.
    6. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    7. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    8. Chua, K.J. & Chou, S.K. & Islam, M.R., 2018. "On the experimental study of a hybrid dehumidifier comprising membrane and composite desiccants," Applied Energy, Elsevier, vol. 220(C), pages 934-943.
    9. Tokarev, Mikhail M. & Gordeeva, Larisa G. & Grekova, Alexandra D. & Aristov, Yuri I., 2018. "Adsorption cycle “heat from cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica," Applied Energy, Elsevier, vol. 211(C), pages 136-145.
    10. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    11. Albahri, O.S. & Alamoodi, A.H. & Deveci, Muhammet & Albahri, A.S. & Mahmoud, Moamin A. & Sharaf, Iman Mohamad & Coffman, D'Maris, 2023. "Multi-perspective evaluation of integrated active cooling systems using fuzzy decision making model," Energy Policy, Elsevier, vol. 182(C).
    12. Wu, X.N. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2018. "Review on substrate of solid desiccant dehumidification system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3236-3249.
    13. Pokorny, Nikola & Shemelin, Viacheslav & Novotny, Jiri, 2022. "Experimental study and performance analysis of a mobile autonomous atmospheric water generator designed for arid climatic conditions," Energy, Elsevier, vol. 250(C).
    14. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    15. Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
    16. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Allouhi, Amine & Kousksou, Tarik & Jamil, Abdelmajid & El Rhafiki, Tarik & Mourad, Youssef & Zeraouli, Youssef, 2015. "Economic and environmental assessment of solar air-conditioning systems in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 770-781.
    18. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    19. Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru, 2018. "Optimization of adsorption isotherm types for desiccant air-conditioning applications," Renewable Energy, Elsevier, vol. 121(C), pages 441-450.
    20. Huang, Yuewu & Zhao, Yonggang, 2023. "Performance assessment of a perovskite solar cell-driven thermionic refrigerator hybrid system," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123004938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.