IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v120y2020ics1364032119308342.html
   My bibliography  Save this article

A review on the water-energy nexus for drinking water production from humid air

Author

Listed:
  • Salehi, Ali Akbar
  • Ghannadi-Maragheh, Mohammad
  • Torab-Mostaedi, Meisam
  • Torkaman, Rezvan
  • Asadollahzadeh, Mehdi

Abstract

The Supply of sustainable freshwater has turned into a fundamental problem in numerous countries. The increment in population, the industrialization of the world, and variation in global warming temperatures lead to an increase in droughts, storms, and floods around the world. Therefore, the problems of water scarcity appear worldwide. Contrary to popular belief, the largest reserves of water are available in the air. Accordingly, several technologies have been developed for the production of drinking water from humid air in the research works. But, the critical problem is the high energy consumption in this equipment. Therefore, the issues of water-energy nexus are the particular subject in the design and the construction of this equipment. The use of renewable energy (solar and wind energy) proposed as the solution for the reduction of energy costs. For example, the development of new desiccants for water harvesting by the utilization of solar energy has been reported in the literature. This paper describes an overall summarized presentational view of the various technologies for water extraction from humid air with the focusing on the water-energy nexus.

Suggested Citation

  • Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308342
    DOI: 10.1016/j.rser.2019.109627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anna Magrini & Lucia Cattani & Marco Cartesegna & Lorenza Magnani, 2017. "Water Production from Air Conditioning Systems: Some Evaluations about a Sustainable Use of Resources," Sustainability, MDPI, vol. 9(8), pages 1-17, July.
    2. Yongmei Zheng & Hao Bai & Zhongbing Huang & Xuelin Tian & Fu-Qiang Nie & Yong Zhao & Jin Zhai & Lei Jiang, 2010. "Directional water collection on wetted spider silk," Nature, Nature, vol. 463(7281), pages 640-643, February.
    3. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    4. Andrew R. Parker & Chris R. Lawrence, 2001. "Water capture by a desert beetle," Nature, Nature, vol. 414(6859), pages 33-34, November.
    5. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    6. Fessehaye, Mussie & Abdul-Wahab, Sabah A. & Savage, Michael J. & Kohler, Thomas & Gherezghiher, Tseggai & Hurni, Hans, 2014. "Fog-water collection for community use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 52-62.
    7. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    8. Kabeel, A.E., 2007. "Water production from air using multi-shelves solar glass pyramid system," Renewable Energy, Elsevier, vol. 32(1), pages 157-172.
    9. Jie Ju & Hao Bai & Yongmei Zheng & Tianyi Zhao & Ruochen Fang & Lei Jiang, 2012. "A multi-structural and multi-functional integrated fog collection system in cactus," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    10. William, G.E. & Mohamed, M.H. & Fatouh, M., 2015. "Desiccant system for water production from humid air using solar energy," Energy, Elsevier, vol. 90(P2), pages 1707-1720.
    11. Yulia Alexandrovna Nazarova & Natalya Yuryevna Sopilko & Ekaterina Alexandrovna Kovaleva & Andrey Valentinovich Kulakov & Anzhelika Feliksovna Orlova & Galina Valentinovna Gavlovskaya, 2019. "How to Solve Water Shortage Problem By Means of Renewable Power Generation?," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 244-249.
    12. Gad, H.E & Hamed, A.M & El-Sharkawy, I.I, 2001. "Application of a solar desiccant/collector system for water recovery from atmospheric air," Renewable Energy, Elsevier, vol. 22(4), pages 541-556.
    13. Solís-Chaves, J.S. & Rocha-Osorio, C.M. & Murari, A.L.L. & Lira, Valdemir Martins & Sguarezi Filho, Alfeu J., 2018. "Extracting potable water from humid air plus electric wind generation: A possible application for a Brazilian prototype," Renewable Energy, Elsevier, vol. 121(C), pages 102-115.
    14. Thomas Nørgaard & Martin Ebner & Marie Dacke, 2012. "Animal or Plant: Which Is the Better Fog Water Collector?," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-4, April.
    15. Rašuo, B. & Dinulović, M. & Veg, A. & Grbović, A. & Bengin, A., 2014. "Harmonization of new wind turbine rotor blades development process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 874-882.
    16. Wang, J.Y. & Wang, R.Z. & Tu, Y.D. & Wang, L.W., 2018. "Universal scalable sorption-based atmosphere water harvesting," Energy, Elsevier, vol. 165(PA), pages 387-395.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Soukane, Sofiane & Son, Hyuk Soo & Mustakeem, Mustakeem & Obaid, M. & Alpatova, Alla & Qamar, Adnan & Jin, Yong & Ghaffour, Noreddine, 2022. "Materials for energy conversion in membrane distillation localized heating: Review, analysis and future perspectives of a paradigm shift," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    5. Paolo Maria Congedo & Cristina Baglivo & Giulia Negro, 2021. "A New Device Hypothesis for Water Extraction from Air and Basic Air Condition System in Developing Countries," Energies, MDPI, vol. 14(15), pages 1-18, July.
    6. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
    7. Kwan, Trevor Hocksun & Shen, Yongting & Hu, Tianxiang & Pei, Gang, 2020. "The fuel cell and atmospheric water generator hybrid system for supplying grid-independent power and freshwater," Applied Energy, Elsevier, vol. 279(C).
    8. Schlör, Holger & Märker, Carolin & Venghaus, Sandra, 2021. "Developing a nexus systems thinking test –A qualitative multi- and mixed methods analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Husam S. Al-Duais & Muhammad Azzam Ismail & Zakaria Alcheikh Mahmoud Awad & Karam M. Al-Obaidi, 2022. "Performance Evaluation of Solar-Powered Atmospheric Water Harvesting Using Different Glazing Materials in the Tropical Built Environment: An Experimental Study," Energies, MDPI, vol. 15(9), pages 1-19, April.
    2. Tu, Rang & Hwang, Yunho, 2020. "Reviews of atmospheric water harvesting technologies," Energy, Elsevier, vol. 201(C).
    3. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    4. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
    6. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    7. Ghosh, Ritwick & Ray, Tapan K. & Ganguly, Ranjan, 2015. "Cooling tower fog harvesting in power plants – A pilot study," Energy, Elsevier, vol. 89(C), pages 1018-1028.
    8. Pokorny, Nikola & Shemelin, Viacheslav & Novotny, Jiri, 2022. "Experimental study and performance analysis of a mobile autonomous atmospheric water generator designed for arid climatic conditions," Energy, Elsevier, vol. 250(C).
    9. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    10. Ayyagari, Veeresh & Hwang, Yunho & Kim, Jungho, 2021. "Design and development of potassium formate based atmospheric water harvester," Energy, Elsevier, vol. 221(C).
    11. Zhang, Zhen & Xu, Yousen & Ma, Tongye & Sèbe, Gilles & Niu, Yue & Wang, Yilong & Tang, Biao & Zhou, Guofu, 2024. "Bio-based interfacial solar steam generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    12. El-Ghonemy, A.M.K., 2012. "Fresh water production from/by atmospheric air for arid regions, using solar energy: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6384-6422.
    13. William, G.E. & Mohamed, M.H. & Fatouh, M., 2015. "Desiccant system for water production from humid air using solar energy," Energy, Elsevier, vol. 90(P2), pages 1707-1720.
    14. Wang, J.Y. & Wang, R.Z. & Wang, L.W. & Liu, J.Y., 2017. "A high efficient semi-open system for fresh water production from atmosphere," Energy, Elsevier, vol. 138(C), pages 542-551.
    15. Zhang, Qiaoxin & Tu, Rang & Liu, Mengdan, 2023. "Performance analyses and optimization studies of desiccant wheel assisted atmospheric water harvesting system under global ambient conditions," Energy, Elsevier, vol. 283(C).
    16. Kuanfu Chen & Yujie Tao & Weiwei Shi, 2022. "Recent Advances in Water Harvesting: A Review of Materials, Devices and Applications," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    17. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    18. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    19. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Zhifeng Jia & Yingjie Chang & Hao Liu & Ge Li & Zilong Guan & Xingchen Zhang & Ruru Xi & Pengcheng Liu & Yu Liu, 2024. "Characteristics and Estimation of Dew in the Loess Hilly Region of Northern Shaanxi Province, China," Sustainability, MDPI, vol. 16(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.