IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp129-139.html
   My bibliography  Save this article

A cooperative game theoretic analysis of electric vehicles parking lot in smart grid

Author

Listed:
  • Aghajani, Saemeh
  • Kalantar, Mohsen

Abstract

Plug-in Hybrid Electric Vehicles (PHEVs) play a major role in decreasing amount of fossil fuels led by transportation system. PHEVs in both Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) modes can effect on the power market. In order to diminish potential challenges related to these effects, various methods like developing optimal charging strategies for the connected PHEVs and managing energy exchange between the PHEVs’ parking lots can be taken into consideration. In this paper, a cooperative game model has been proposed in order to determine charging/discharging price adaptively. Simulation results show how this model leads to the maximization of utilities’ profit and minimization of the parking lots’ cost. Furthermore, a stochastic analysis has been done over the proposed model in order to well understand how much the deviation of profit and expected value of profit are in different levels of uncertainty. The numerical results prove that higher deviation over spot market price leads to both higher mean and deviation over profit for utilities, and the owner of utilities should consider the effect of price’s uncertainty whenever it is considerable.

Suggested Citation

  • Aghajani, Saemeh & Kalantar, Mohsen, 2017. "A cooperative game theoretic analysis of electric vehicles parking lot in smart grid," Energy, Elsevier, vol. 137(C), pages 129-139.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:129-139
    DOI: 10.1016/j.energy.2017.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217311805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schuller, Alexander & Flath, Christoph M. & Gottwalt, Sebastian, 2015. "Quantifying load flexibility of electric vehicles for renewable energy integration," Applied Energy, Elsevier, vol. 151(C), pages 335-344.
    2. Zhang, Qi & Ishihara, Keiichi N. & Mclellan, Benjamin C. & Tezuka, Tetsuo, 2012. "Scenario analysis on future electricity supply and demand in Japan," Energy, Elsevier, vol. 38(1), pages 376-385.
    3. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    4. Shafie-khah, Miadreza & Parsa Moghaddam, Mohsen & Sheikh-El-Eslami, Mohamad Kazem & Rahmani-Andebili, Mehdi, 2012. "Modeling of interactions between market regulations and behavior of plug-in electric vehicle aggregators in a virtual power market environment," Energy, Elsevier, vol. 40(1), pages 139-150.
    5. Su, Wencong & Chow, Mo-Yuen, 2012. "Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck," Applied Energy, Elsevier, vol. 96(C), pages 171-182.
    6. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Ye & Huang, Miaohua & Yang, Lan, 2018. "Data-driven optimized layout of battery electric vehicle charging infrastructure," Energy, Elsevier, vol. 150(C), pages 735-744.
    2. Charilaos Latinopoulos & Aruna Sivakumar & John W. Polak, 2021. "Optimal Pricing of Vehicle-to-Grid Services Using Disaggregate Demand Models," Energies, MDPI, vol. 14(4), pages 1-27, February.
    3. Semeneh Hunachew Bayih & Surafel Luleseged Tilahun, 2024. "Dynamic vehicle parking pricing. A review," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(1), pages 35-59.
    4. Rasulkhani, Saeid & Chow, Joseph Y.J., 2019. "Route-cost-assignment with joint user and operator behavior as a many-to-one stable matching assignment game," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 60-81.
    5. Muhammad Ahsan Khan & Akhtar Hussain & Woon-Gyu Lee & Hak-Man Kim, 2023. "An Incentive-Based Mechanism to Enhance Energy Trading among Microgrids, EVs, and Grid," Energies, MDPI, vol. 16(17), pages 1-23, September.
    6. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2017. "Integrating renewable energy sources by electric vehicle fleets under uncertainty," Energy, Elsevier, vol. 141(C), pages 2145-2153.
    7. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2019. "Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics," Applied Energy, Elsevier, vol. 242(C), pages 769-781.
    8. Zhang, Miao & Kang, Jiaxi & Tang, Ruixin & Xu, Fangyuan & Fan, Yiliang & Tang, Xiongming & Zhang, Haotian, 2020. "Sharing car park system for parking units of multiple EVs in a power market," Energy, Elsevier, vol. 212(C).
    9. Mohammadi Landi, Meysam & Mohammadi, Mohammad & Rastegar, Mohammad, 2018. "Simultaneous determination of optimal capacity and charging profile of plug-in electric vehicle parking lots in distribution systems," Energy, Elsevier, vol. 158(C), pages 504-511.
    10. Varone, Alberto & Heilmann, Zeno & Porruvecchio, Guido & Romanino, Alessandro, 2024. "Solar parking lot management: An IoT platform for smart charging EV fleets, using real-time data and production forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    12. Subramanian, Vignesh & Das, Tapas K., 2019. "A two-layer model for dynamic pricing of electricity and optimal charging of electric vehicles under price spikes," Energy, Elsevier, vol. 167(C), pages 1266-1277.
    13. Li, Shuangqi & Gu, Chenghong & Zeng, Xianwu & Zhao, Pengfei & Pei, Xiaoze & Cheng, Shuang, 2021. "Vehicle-to-grid management for multi-time scale grid power balancing," Energy, Elsevier, vol. 234(C).
    14. Tang, Juan & Ji, Guan-Qun & Liu, Zhi & Sheu, Jiuh-Biing, 2024. "Electric vehicle battery-charging service and operations managing under different charging station construction modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    15. Homa Rashidizadeh-Kermani & Hamid Reza Najafi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets," Energies, MDPI, vol. 11(9), pages 1-20, September.
    16. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Operational scheduling of electric vehicles parking lot integrated with renewable generation based on bilevel programming approach," Energy, Elsevier, vol. 139(C), pages 422-432.
    17. Sasan Maleki & Talal Rahwan & Siddhartha Ghosh & Areej Malibari & Daniyal Alghazzawi & Alex Rogers & Hamid Beigy & Nicholas R Jennings, 2020. "The Shapley value for a fair division of group discounts for coordinating cooling loads," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honarmand, Masoud & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition," Energy, Elsevier, vol. 65(C), pages 572-579.
    2. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    3. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2015. "Value of flexible electric vehicles in providing spinning reserve services," Applied Energy, Elsevier, vol. 157(C), pages 60-74.
    4. Zhang, Haifeng & Tian, Ming & Zhang, Cong & Wang, Bin & Wang, Dai, 2021. "A systematic solution to quantify economic values of vehicle grid integration," Energy, Elsevier, vol. 232(C).
    5. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    6. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    7. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    8. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.
    9. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    10. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    11. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    12. J Barquín & B Vitoriano & E Centeno & F Fernández-Menéndez, 2009. "An optimization-based conjectured supply function equilibrium model for network constrained electricity markets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1719-1729, December.
    13. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    14. Zugang Liu & Anna Nagurney, 2009. "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 600-624, October.
    15. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    16. Newbery, David & Strbac, Goran & Viehoff, Ivan, 2016. "The benefits of integrating European electricity markets," Energy Policy, Elsevier, vol. 94(C), pages 253-263.
    17. Virasjoki, Vilma & Siddiqui, Afzal S. & Oliveira, Fabricio & Salo, Ahti, 2020. "Utility-scale energy storage in an imperfectly competitive power sector," Energy Economics, Elsevier, vol. 88(C).
    18. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    19. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, , vol. 32(1), pages 119-148, January.
    20. Justin Fraselle & Sabine Louise Limbourg & Laura Vidal, 2021. "Cost and Environmental Impacts of a Mixed Fleet of Vehicles," Sustainability, MDPI, vol. 13(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:129-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.