IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v126y2017icp312-325.html
   My bibliography  Save this article

Mathematical modeling, simulation and validation of a boiler drum: Some investigations

Author

Listed:
  • Sunil, P.U.
  • Barve, Jayesh
  • Nataraj, P.S.V.

Abstract

The boiler or steam generator is a widely-used energy conversion equipment across the industry to generate steam for power generation or utility purposes. Recently, there is an increasing demand to operate the thermal power plant boilers in more flexible and agile manner due to renewable energy penetration, excess generation capacity, online trading, etc. Mathematical models representing dynamic behavior of the power plant boilers across wide-range operational scenarios like start-ups and load-changes are necessary for such operability and control studies. However, boiler models suitable for such investigations are scarce in the literature. This paper presents a mixed standard lumped model representing the boiler-drum dynamics and a 1-dimensional distributed model based on two-phase thermal hydraulic stability code to represent dynamics of evaporator sub-system. The model is validated using wide-range operational plant data collected from a boiler unit of a combined cycle power plant. Besides, the performance of the proposed model is compared with other two well-known first-principle based models. The performance metrics used for comparisons are small range accuracy, wide-range accuracy, relative computational time and memory requirements. The proposed model is found to out-perform existing models, particularly for the wide-range dynamic operational scenario.

Suggested Citation

  • Sunil, P.U. & Barve, Jayesh & Nataraj, P.S.V., 2017. "Mathematical modeling, simulation and validation of a boiler drum: Some investigations," Energy, Elsevier, vol. 126(C), pages 312-325.
  • Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:312-325
    DOI: 10.1016/j.energy.2017.02.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sreepradha, Chandrasekharan & Panda, Rames Chandra & Bhuvaneswari, Natrajan Swaminathan, 2017. "Mathematical model for integrated coal fired thermal boiler using physical laws," Energy, Elsevier, vol. 118(C), pages 985-998.
    2. Nikula, Riku-Pekka & Ruusunen, Mika & Leiviskä, Kauko, 2016. "Data-driven framework for boiler performance monitoring," Applied Energy, Elsevier, vol. 183(C), pages 1374-1388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Experimental Study of a Coil Type Steam Boiler Operated on an Oil Field in the Subarctic Continental Climate," Energies, MDPI, vol. 14(4), pages 1-23, February.
    2. Lin, Meng & Reinhold, Jan & Monnerie, Nathalie & Haussener, Sophia, 2018. "Modeling and design guidelines for direct steam generation solar receivers," Applied Energy, Elsevier, vol. 216(C), pages 761-776.
    3. Grądziel, Sławomir, 2019. "Analysis of thermal and flow phenomena in natural circulation boiler evaporator," Energy, Elsevier, vol. 172(C), pages 881-891.
    4. Zima, Wiesław & Grądziel, Sławomir & Cebula, Artur & Rerak, Monika & Kozak-Jagieła, Ewa & Pilarczyk, Marcin, 2023. "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, Elsevier, vol. 263(PC).
    5. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    6. Chandrasekharan, Sreepradha & Panda, Rames C. & Swaminathan, Bhuvaneswari Natrajan & Panda, Atanu, 2018. "Operational control of an integrated drum boiler of a coal fired thermal power plant," Energy, Elsevier, vol. 159(C), pages 977-987.
    7. Konstantin Osintsev & Sergei Aliukov & Yuri Prikhodko, 2021. "Management of the Torch Structure with the New Methodological Approaches to Regulation Based on Neural Network Algorithms," Energies, MDPI, vol. 14(7), pages 1-17, March.
    8. Ducardo L. Molina & Juan Ricardo Vidal Medina & Alexis Sagastume Gutiérrez & Juan J. Cabello Eras & Jesús A. Lopez & Simón Hincapie & Enrique C. Quispe, 2023. "Multiobjective Optimization of the Energy Efficiency and the Steam Flow in a Bagasse Boiler," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    9. Sunil, P.U. & Barve, Jayesh & Nataraj, P.S.V., 2018. "A robust heat recovery steam generator drum level control for wide range operation flexibility considering renewable energy integration," Energy, Elsevier, vol. 163(C), pages 873-893.
    10. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    11. Taler, Dawid & Dzierwa, Piotr & Taler, Jan, 2020. "New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings," Energy, Elsevier, vol. 200(C).
    12. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
    13. Farahani, Yaser & Jafarian, Ali & Mahdavi Keshavar, Omid, 2022. "Dynamic simulation of a hybrid once-through and natural circulation Heat Recovery Steam Generator (HRSG)," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daogang Peng & Yue Xu & Huirong Zhao, 2019. "Research on Intelligent Predictive AGC of a Thermal Power Unit Based on Control Performance Standards," Energies, MDPI, vol. 12(21), pages 1-23, October.
    2. Hong, Feng & Wang, Rui & Song, Jie & Gao, Mingming & Liu, Jizhen & Long, Dongteng, 2022. "A performance evaluation framework for deep peak shaving of the CFB boiler unit based on the DBN-LSSVM algorithm," Energy, Elsevier, vol. 238(PA).
    3. Satyavada, Harish & Baldi, Simone, 2018. "Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and estimation," Energy, Elsevier, vol. 142(C), pages 121-129.
    4. Grądziel, Sławomir, 2019. "Analysis of thermal and flow phenomena in natural circulation boiler evaporator," Energy, Elsevier, vol. 172(C), pages 881-891.
    5. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
    7. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    8. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
    9. Granda, Mariusz & Trojan, Marcin & Taler, Dawid, 2020. "CFD analysis of steam superheater operation in steady and transient state," Energy, Elsevier, vol. 199(C).
    10. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    11. Huang, Congzhi & Li, Zhuoyong, 2023. "Data-driven modeling of ultra-supercritical unit coordinated control system by improved transformer network," Energy, Elsevier, vol. 266(C).
    12. Guillermo Valencia Ochoa & Jhan Piero Rojas & Juan Campos Avella, 2019. "Energy Optimization of Industrial Steam Boiler using Energy Performance Indicator," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 109-117.
    13. Trojan, Marcin, 2019. "Modeling of a steam boiler operation using the boiler nonlinear mathematical model," Energy, Elsevier, vol. 175(C), pages 1194-1208.
    14. Heydar Maddah & Milad Sadeghzadeh & Mohammad Hossein Ahmadi & Ravinder Kumar & Shahaboddin Shamshirband, 2019. "Modeling and Efficiency Optimization of Steam Boilers by Employing Neural Networks and Response-Surface Method (RSM)," Mathematics, MDPI, vol. 7(7), pages 1-17, July.
    15. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    16. Hou, Guolian & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2020. "Fuzzy modeling and fast model predictive control of gas turbine system," Energy, Elsevier, vol. 200(C).
    17. Zima, Wiesław, 2019. "Simulation of steam superheater operation under conditions of pressure decrease," Energy, Elsevier, vol. 172(C), pages 932-944.
    18. Olli-Jussi Korpinen & Mika Aalto & Raghu KC & Timo Tokola & Tapio Ranta, 2023. "Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review," Energies, MDPI, vol. 16(2), pages 1-23, January.
    19. Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
    20. Vito Introna & Annalisa Santolamazza & Vittorio Cesarotti, 2024. "Integrating Industry 4.0 and 5.0 Innovations for Enhanced Energy Management Systems," Energies, MDPI, vol. 17(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:312-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.