IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i7p629-d248633.html
   My bibliography  Save this article

Modeling and Efficiency Optimization of Steam Boilers by Employing Neural Networks and Response-Surface Method (RSM)

Author

Listed:
  • Heydar Maddah

    (Department of Chemistry, Payame Noor University (PNU), P.O. Box, Tehran 19395-3697, Iran)

  • Milad Sadeghzadeh

    (Department of Renewable Energy and Environmental Engineering, University of Tehran, Tehran 1417853933, Iran)

  • Mohammad Hossein Ahmadi

    (Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • Ravinder Kumar

    (School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India)

  • Shahaboddin Shamshirband

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

Abstract

Boiler efficiency is called to some extent of total thermal energy which can be recovered from the fuel. Boiler efficiency losses are due to four major factors: Dry gas flux, the latent heat of steam in the flue gas, the combustion loss or the loss of unburned fuel, and radiation and convection losses. In this research, the thermal behavior of boilers in gas refinery facilities is studied and their efficiency and their losses are calculated. The main part of this research is comprised of analyzing the effect of various parameters on efficiency such as excess air, fuel moisture, air humidity, fuel and air temperature, the temperature of combustion gases, and thermal value of the fuel. Based on the obtained results, it is possible to analyze and make recommendations for optimizing boilers in the gas refinery complex using response-surface method (RSM).

Suggested Citation

  • Heydar Maddah & Milad Sadeghzadeh & Mohammad Hossein Ahmadi & Ravinder Kumar & Shahaboddin Shamshirband, 2019. "Modeling and Efficiency Optimization of Steam Boilers by Employing Neural Networks and Response-Surface Method (RSM)," Mathematics, MDPI, vol. 7(7), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:7:p:629-:d:248633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/7/629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/7/629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Zixiang & Miao, Zhengqing & Zhou, Yan & Wen, Shurong & Li, Jiangtao, 2018. "Influence of increased primary air ratio on boiler performance in a 660 MW brown coal boiler," Energy, Elsevier, vol. 152(C), pages 804-817.
    2. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Prevention of boiler performance degradation under large primary air ratio scenario in a 660 MW brown coal boiler," Energy, Elsevier, vol. 155(C), pages 474-483.
    3. Echi, Souhir & Bouabidi, Abdallah & Driss, Zied & Abid, Mohamed Salah, 2019. "CFD simulation and optimization of industrial boiler," Energy, Elsevier, vol. 169(C), pages 105-114.
    4. Trojan, Marcin, 2019. "Modeling of a steam boiler operation using the boiler nonlinear mathematical model," Energy, Elsevier, vol. 175(C), pages 1194-1208.
    5. Behbahaninia, A. & Ramezani, S. & Lotfi Hejrandoost, M., 2017. "A loss method for exergy auditing of steam boilers," Energy, Elsevier, vol. 140(P1), pages 253-260.
    6. Nikula, Riku-Pekka & Ruusunen, Mika & Leiviskä, Kauko, 2016. "Data-driven framework for boiler performance monitoring," Applied Energy, Elsevier, vol. 183(C), pages 1374-1388.
    7. Szega, Marcin & Czyż, Tomasz, 2019. "Problems of calculation the energy efficiency of a dual-fuel steam boiler fired with industrial waste gases," Energy, Elsevier, vol. 178(C), pages 134-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousra El kihel & Ali El kihel & El Mahdi Bouyahrouzi, 2022. "Contribution of Maintenance 4.0 in Sustainable Development with an Industrial Case Study," Sustainability, MDPI, vol. 14(17), pages 1-26, September.
    2. Xu, Jing & Cui, Zhipeng & Ma, Suxia & Wang, Xiaowei & Zhang, Zhiyao & Zhang, Guoxia, 2024. "Data based digital twin for operational performance optimization in CFB boilers," Energy, Elsevier, vol. 306(C).
    3. Tingyi Chai & Chang Liu & Yichuan Xu & Mengru Ding & Muyao Li & Hanyu Yang & Xun Dou, 2024. "Optimal Dispatching Strategy for Textile-Based Virtual Power Plants Participating in GridLoad Interactions Driven by Energy Price," Energies, MDPI, vol. 17(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yanhong & Yu, Jie & Liang, Hejun & Li, Qi & Hu, Pengfei & Wang, Di, 2024. "Modeling on rapid prediction and cause diagnosis of boiler combustion efficiency," Energy, Elsevier, vol. 302(C).
    2. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
    3. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
    4. Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
    5. Madejski, Paweł & Żymełka, Piotr, 2020. "Calculation methods of steam boiler operation factors under varying operating conditions with the use of computational thermodynamic modeling," Energy, Elsevier, vol. 197(C).
    6. Laubscher, Ryno & Rousseau, Pieter, 2020. "Numerical investigation on the impact of variable particle radiation properties on the heat transfer in high ash pulverized coal boiler through co-simulation," Energy, Elsevier, vol. 195(C).
    7. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Effects of momentum ratio and velocity difference on combustion performance in lignite-fired pulverized boiler," Energy, Elsevier, vol. 165(PA), pages 825-839.
    8. Wang, Yanhong & Zou, Zhihong & Lu, Ke & Li, Qi & Hu, Pengfei & Wang, Di, 2024. "Modeling for on-line monitoring of carbon burnout coefficient in boiler under partial load," Energy, Elsevier, vol. 288(C).
    9. Jun Liu & Yuyan Zhou & Lihua Chen & Lichuan Wang, 2023. "Assessing the Impact of Climate Change on Water Usage in Typical Industrial Enterprises," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    10. Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
    11. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    12. Xue, Wenyuan & Lu, Yichen & Wang, Zhi & Cao, Shengxian & Sui, Mengxuan & Yang, Yuan & Li, Jiyuan & Xie, Yubin, 2024. "Reconstructing near-water-wall temperature in coal-fired boilers using improved transfer learning and hidden layer configuration optimization," Energy, Elsevier, vol. 294(C).
    13. Majdak, Marek & Grądziel, Sławomir, 2020. "Influence of thermal and flow conditions on the thermal stresses distribution in the evaporator tubes," Energy, Elsevier, vol. 209(C).
    14. Hong, Feng & Wang, Rui & Song, Jie & Gao, Mingming & Liu, Jizhen & Long, Dongteng, 2022. "A performance evaluation framework for deep peak shaving of the CFB boiler unit based on the DBN-LSSVM algorithm," Energy, Elsevier, vol. 238(PA).
    15. Wang, Qi & Wang, Enlu & Chionoso, Oguga Paul, 2022. "Numerical simulation of the synergistic effect of combustion for the hydrochar /coal blends in a blast furnace," Energy, Elsevier, vol. 238(PB).
    16. Piotr Jóźwiak & Jarosław Hercog & Aleksandra Kiedrzyńska & Krzysztof Badyda & Daniela Olevano, 2020. "Thermal Effects of Natural Gas and Syngas Co-Firing System on Heat Treatment Process in the Preheating Furnace," Energies, MDPI, vol. 13(7), pages 1-15, April.
    17. Pei Li & Ting Bao & Jian Guan & Zifu Shi & Zengxiao Xie & Yonggang Zhou & Wei Zhong, 2023. "Computational Analysis of Tube Wall Temperature of Superheater in 1000 MW Ultra-Supercritical Boiler Based on the Inlet Thermal Deviation," Energies, MDPI, vol. 16(3), pages 1-15, February.
    18. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    19. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    20. Sunil, P.U. & Barve, Jayesh & Nataraj, P.S.V., 2017. "Mathematical modeling, simulation and validation of a boiler drum: Some investigations," Energy, Elsevier, vol. 126(C), pages 312-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:7:p:629-:d:248633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.