IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p893-d1033910.html
   My bibliography  Save this article

Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review

Author

Listed:
  • Olli-Jussi Korpinen

    (School of Energy Systems, Lappeenranta-Lahti University of Technology, Lönnrotinkatu 7, 50100 Mikkeli, Finland
    School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80100 Joensuu, Finland)

  • Mika Aalto

    (School of Energy Systems, Lappeenranta-Lahti University of Technology, Lönnrotinkatu 7, 50100 Mikkeli, Finland)

  • Raghu KC

    (School of Energy Systems, Lappeenranta-Lahti University of Technology, Lönnrotinkatu 7, 50100 Mikkeli, Finland)

  • Timo Tokola

    (School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80100 Joensuu, Finland)

  • Tapio Ranta

    (School of Energy Systems, Lappeenranta-Lahti University of Technology, Lönnrotinkatu 7, 50100 Mikkeli, Finland)

Abstract

The supply logistics of energy biomasses generally involves a complex system of supply chains, which aim to achieve timely and cost-efficient feedstock deliveries to biomass demand points. The performance of supply chains is often examined in case studies where spatial data about biomass sources and transportation networks are deployed in varying resolutions and to different geographical extents. In this paper, we have reviewed 94 publications, in which spatial data were used in case studies that focused on analysing and optimising energy biomass supply chains. The reviewed publications were classified into 16 categories, according to the publication year, study methods and objectives, biomass types, supply system complexity and the spatial features of each study area. This review found that the use of geographical information systems in this context has increased in popularity in recent years, and that and the multiformity of the applied methods, study objectives and data sources have increased simultaneously. Another finding was that most of the studies that we reviewed focused on countries in which spatial biomass and transport network data of high quality were unrestrictedly available. Nevertheless, case studies, including spatial data from multiple countries, were represented marginally in the papers that we reviewed. In this paper we also argue that a standard way of reporting geographical contents in biomass case studies should be developed to improve the comprehension and reproducibility of the publications in this field of research.

Suggested Citation

  • Olli-Jussi Korpinen & Mika Aalto & Raghu KC & Timo Tokola & Tapio Ranta, 2023. "Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review," Energies, MDPI, vol. 16(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:893-:d:1033910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perpiñá, C. & Alfonso, D. & Pérez-Navarro, A. & Peñalvo, E. & Vargas, C. & Cárdenas, R., 2009. "Methodology based on Geographic Information Systems for biomass logistics and transport optimisation," Renewable Energy, Elsevier, vol. 34(3), pages 555-565.
    2. Nikula, Riku-Pekka & Ruusunen, Mika & Leiviskä, Kauko, 2016. "Data-driven framework for boiler performance monitoring," Applied Energy, Elsevier, vol. 183(C), pages 1374-1388.
    3. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    4. Fumi Harahap & Sylvain Leduc & Sennai Mesfun & Dilip Khatiwada & Florian Kraxner & Semida Silveira, 2019. "Opportunities to Optimize the Palm Oil Supply Chain in Sumatra, Indonesia," Energies, MDPI, vol. 12(3), pages 1-24, January.
    5. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    6. Van Meerbeek, Koenraad & Ottoy, Sam & De Meyer, Annelies & Van Schaeybroeck, Tom & Van Orshoven, Jos & Muys, Bart & Hermy, Martin, 2015. "The bioenergy potential of conservation areas and roadsides for biogas in an urbanized region," Applied Energy, Elsevier, vol. 154(C), pages 742-751.
    7. Hu, Hao & Lin, Tao & Wang, Shaowen & Rodriguez, Luis F., 2017. "A cyberGIS approach to uncertainty and sensitivity analysis in biomass supply chain optimization," Applied Energy, Elsevier, vol. 203(C), pages 26-40.
    8. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    9. Aalto, Mika & KC, Raghu & Korpinen, Olli-Jussi & Karttunen, Kalle & Ranta, Tapio, 2019. "Modeling of biomass supply system by combining computational methods – A review article," Applied Energy, Elsevier, vol. 243(C), pages 145-154.
    10. De Laporte, Aaron V. & Weersink, Alfons J. & McKenney, Daniel W., 2016. "Effects of supply chain structure and biomass prices on bioenergy feedstock supply," Applied Energy, Elsevier, vol. 183(C), pages 1053-1064.
    11. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
    12. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    13. Arabi, Mahsa & Yaghoubi, Saeed & Tajik, Javad, 2019. "A mathematical model for microalgae-based biobutanol supply chain network design under harvesting and drying uncertainties," Energy, Elsevier, vol. 179(C), pages 1004-1016.
    14. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework," Applied Energy, Elsevier, vol. 206(C), pages 1088-1101.
    15. Singlitico, Alessandro & Kilgallon, Ian & Goggins, Jamie & Monaghan, Rory F.D., 2019. "GIS-based techno-economic optimisation of a regional supply chain for large-scale deployment of bio-SNG in a natural gas network," Applied Energy, Elsevier, vol. 250(C), pages 1036-1052.
    16. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2015. "A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS)," European Journal of Operational Research, Elsevier, vol. 245(1), pages 247-264.
    17. Wang, Xiaolei & Ouyang, Yanfeng & Yang, Hai & Bai, Yun, 2013. "Optimal biofuel supply chain design under consumption mandates with renewable identification numbers," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 158-171.
    18. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    19. Raghu KC & Mika Aalto & Olli-Jussi Korpinen & Tapio Ranta & Svetlana Proskurina, 2020. "Lifecycle Assessment of Biomass Supply Chain with the Assistance of Agent-Based Modelling," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    20. Flavio Andreoli Bonazzi & Sirio R.S. Cividino & Ilaria Zambon & Enrico Maria Mosconi & Stefano Poponi, 2018. "Building Energy Opportunity with a Supply Chain Based on the Local Fuel-Producing Capacity," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    21. Schröder, Tim & Lauven, Lars-Peter & Geldermann, Jutta, 2018. "Improving biorefinery planning: Integration of spatial data using exact optimization nested in an evolutionary strategy," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1005-1019.
    22. James A. Larson & Tun‐Hsiang Yu & Burton C. English & Daniel F. Mooney & Chenguang Wang, 2010. "Cost evaluation of alternative switchgrass producing, harvesting, storing, and transporting systems and their logistics in the Southeastern USA," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 70(2), pages 184-200, August.
    23. Kang, Seongwhan & Heo, Seongmin & Realff, Matthew J. & Lee, Jay H., 2020. "Three-stage design of high-resolution microalgae-based biofuel supply chain using geographic information system," Applied Energy, Elsevier, vol. 265(C).
    24. Baglivi, Antonella & Fiorese, Giulia & Guariso, Giorgio & Uggè, Clara, 2015. "Valuing crop diversity in biodiesel production plans," Energy, Elsevier, vol. 93(P2), pages 2351-2362.
    25. Hu, Ming-Che & Huang, An-Lei & Wen, Tzai-Hung, 2013. "GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market," Energy, Elsevier, vol. 55(C), pages 354-360.
    26. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    27. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    28. Zhang, Fengli & Johnson, Dana & Johnson, Mark & Watkins, David & Froese, Robert & Wang, Jinjiang, 2016. "Decision support system integrating GIS with simulation and optimisation for a biofuel supply chain," Renewable Energy, Elsevier, vol. 85(C), pages 740-748.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardine Chigozie Chidozie & Ana Luísa Ramos & José Vasconcelos Ferreira & Luís Pinto Ferreira, 2023. "Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Senocak, Ahmet Alp & Guner Goren, Hacer, 2023. "Three-phase artificial intelligence-geographic information systems-based biomass network design approach: A case study in Denizli," Applied Energy, Elsevier, vol. 343(C).
    3. Aalto, Mika & KC, Raghu & Korpinen, Olli-Jussi & Karttunen, Kalle & Ranta, Tapio, 2019. "Modeling of biomass supply system by combining computational methods – A review article," Applied Energy, Elsevier, vol. 243(C), pages 145-154.
    4. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    6. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    7. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
    8. Yunusoglu, Pinar & Ozsoydan, Fehmi Burcin & Bilgen, Bilge, 2024. "A machine learning-based two-stage approach for the location of undesirable facilities in the biomass-to-bioenergy supply chain," Applied Energy, Elsevier, vol. 362(C).
    9. Jayarathna, Lasinidu & Kent, Geoff & O'Hara, Ian & Hobson, Philip, 2020. "A Geographical Information System based framework to identify optimal location and size of biomass energy plants using single or multiple biomass types," Applied Energy, Elsevier, vol. 275(C).
    10. Islam Hassanin & Matjaz Knez, 2022. "Managing Supply Chain Activities in the Field of Energy Production Focusing on Renewables," Sustainability, MDPI, vol. 14(12), pages 1-33, June.
    11. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    12. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    13. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    14. Suckling, Ian D. & de Miguel Mercader, Ferran & Monge, Juan J. & Wakelin, Steve J. & Hall, Peter W. & Bennett, Paul J. & Höck, Barbara & Samsatli, Nouri J. & Samsatli, Sheila & Fahmy, Muthasim, 2022. "Best options for large-scale production of liquid biofuels by value chain modelling: A New Zealand case study," Applied Energy, Elsevier, vol. 323(C).
    15. De Laporte, Aaron V. & Ripplinger, David G., 2019. "The effects of site selection, opportunity costs and transportation costs on bioethanol production," Renewable Energy, Elsevier, vol. 131(C), pages 73-82.
    16. Shu, Kesheng & Schneider, Uwe A. & Scheffran, Jürgen, 2017. "Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations," Applied Energy, Elsevier, vol. 192(C), pages 247-261.
    17. Edgar Gutierrez-Franco & Andres Polo & Nicolas Clavijo-Buritica & Luis Rabelo, 2021. "Multi-Objective Optimization to Support the Design of a Sustainable Supply Chain for the Generation of Biofuels from Forest Waste," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    18. Li, Yuanzhe, 2019. "Modeling Bioenergy Supply Chains: Feedstocks Pretreatment, Integrated System Design Under Uncertainty," Institute of Transportation Studies, Working Paper Series qt1539g5sj, Institute of Transportation Studies, UC Davis.
    19. Leonel J. R. Nunes & Sandra Silva, 2023. "Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis," Logistics, MDPI, vol. 7(3), pages 1-21, August.
    20. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:893-:d:1033910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.