IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i8p2621-2627.html
   My bibliography  Save this article

Monitoring strategies for a combined cycle electric power generator

Author

Listed:
  • Finn, Joshua
  • Wagner, John
  • Bassily, Hany

Abstract

Electric power generation systems require continuous monitoring to ensure safe and reliable operation. The data available from plant sensors supplied to the control systems may also be analyzed to verify proper operation and predict future behavior. In this paper, a combined cycle electric power plant has been monitored using limit and trend checking, reconstructed phase planes, and regression curves for transient and steady-state power generation. Representative experimental results are presented and discussed to illustrate the strengths of the proposed analysis strategies on a 510Â MW combined-cycle system and a 180Â MW steam turbine. The phase space analysis provides a means of visual inspection of operational anomalies and also offers a context for numerical analysis of the anomalous behavior. The statistical prognostic method provided regression errors below 2.0% for two of the three proposed plant signal combinations. However, all signal combinations offered the opportunity for system monitoring and diagnosis in terms of threshold violations which varied from 2.7% to 5.4% for these two signal sets. Overall, the monitoring strategies exhibited great promise for power generation system applications and merit further study.

Suggested Citation

  • Finn, Joshua & Wagner, John & Bassily, Hany, 2010. "Monitoring strategies for a combined cycle electric power generator," Applied Energy, Elsevier, vol. 87(8), pages 2621-2627, August.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2621-2627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00048-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barelli, L. & Bidini, G. & Bonucci, F., 2009. "Development of the regulation mapping of 1Â MW internal combustion engine for diagnostic scopes," Applied Energy, Elsevier, vol. 86(7-8), pages 1087-1104, July.
    2. Li, Y.G. & Nilkitsaranont, P., 2009. "Gas turbine performance prognostic for condition-based maintenance," Applied Energy, Elsevier, vol. 86(10), pages 2152-2161, October.
    3. Ogaji, Stephen & Sampath, Suresh & Singh, Riti & Probert, Douglas, 2002. "Novel approach for improving power-plant availability using advanced engine diagnostics," Applied Energy, Elsevier, vol. 72(1), pages 389-407, May.
    4. Kim, Si-Moon & Joo, Yong-Jin, 2005. "Implementation of on-line performance monitoring system at Seoincheon and Sinincheon combined cycle power plant," Energy, Elsevier, vol. 30(13), pages 2383-2401.
    5. Ogaji, S.O.T. & Marinai, L. & Sampath, S. & Singh, R. & Prober, S.D., 2005. "Gas-turbine fault diagnostics: a fuzzy-logic approach," Applied Energy, Elsevier, vol. 82(1), pages 81-89, September.
    6. Barelli, L. & Bidini, G. & Bonucci, F., 2009. "Diagnosis methodology for the turbocharger groups installed on a 1Â MW internal combustion engine," Applied Energy, Elsevier, vol. 86(12), pages 2721-2730, December.
    7. Ghorbanian, K. & Gholamrezaei, M., 2009. "An artificial neural network approach to compressor performance prediction," Applied Energy, Elsevier, vol. 86(7-8), pages 1210-1221, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Moura, Elineudo Pinho & de Abreu Melo Junior, Francisco Erivan & Rocha Damasceno, Filipe Francisco & Campos Figueiredo, Luis Câmara & de Andrade, Carla Freitas & de Almeida, Maurício Soares & Alexa, 2016. "Classification of imbalance levels in a scaled wind turbine through detrended fluctuation analysis of vibration signals," Renewable Energy, Elsevier, vol. 96(PA), pages 993-1002.
    2. Syed, Mohammed S. & Dooley, Kerry M. & Madron, Frantisek & Knopf, F. Carl, 2016. "Enhanced turbine monitoring using emissions measurements and data reconciliation," Applied Energy, Elsevier, vol. 173(C), pages 355-365.
    3. Blanco, J.M. & Vazquez, L. & Peña, F. & Diaz, D., 2013. "New investigation on diagnosing steam production systems from multivariate time series applied to thermal power plants," Applied Energy, Elsevier, vol. 101(C), pages 589-599.
    4. Guo, Sisi & Liu, Pei & Li, Zheng, 2018. "Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation," Energy, Elsevier, vol. 151(C), pages 203-210.
    5. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants," Applied Energy, Elsevier, vol. 134(C), pages 270-282.
    6. Blanco, Jesús M. & Vazquez, L. & Peña, F., 2012. "Investigation on a new methodology for thermal power plant assessment through live diagnosis monitoring of selected process parameters; application to a case study," Energy, Elsevier, vol. 42(1), pages 170-180.
    7. Ganesan, P. & Rajakarunakaran, S. & Thirugnanasambandam, M. & Devaraj, D., 2015. "Artificial neural network model to predict the diesel electric generator performance and exhaust emissions," Energy, Elsevier, vol. 83(C), pages 115-124.
    8. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    9. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Data reconciliation for the overall thermal system of a steam turbine power plant," Applied Energy, Elsevier, vol. 165(C), pages 1037-1051.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    2. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    3. Syed, Mohammed S. & Dooley, Kerry M. & Madron, Frantisek & Knopf, F. Carl, 2016. "Enhanced turbine monitoring using emissions measurements and data reconciliation," Applied Energy, Elsevier, vol. 173(C), pages 355-365.
    4. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2014. "A component map tuning method for performance prediction and diagnostics of gas turbine compressors," Applied Energy, Elsevier, vol. 135(C), pages 572-585.
    5. Barelli, L. & Barluzzi, E. & Bidini, G., 2011. "Modeling of a 1Â MW cogenerative internal combustion engine for diagnostic scopes," Applied Energy, Elsevier, vol. 88(8), pages 2702-2712, August.
    6. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    7. Silva, J.A.M. & Venturini, O.J. & Lora, E.E.S. & Pinho, A.F. & Santos, J.J.C.S., 2011. "Thermodynamic information system for diagnosis and prognosis of power plant operation condition," Energy, Elsevier, vol. 36(7), pages 4072-4079.
    8. Usón, Sergio & Valero, Antonio & Correas, Luis, 2010. "Energy efficiency assessment and improvement in energy intensive systems through thermoeconomic diagnosis of the operation," Applied Energy, Elsevier, vol. 87(6), pages 1989-1995, June.
    9. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    10. Zhou, Dengji & Yu, Ziqiang & Zhang, Huisheng & Weng, Shilie, 2016. "A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation," Energy, Elsevier, vol. 109(C), pages 420-429.
    11. Orme, George J. & Venturini, Mauro, 2011. "Property risk assessment for power plants: Methodology, validation and application," Energy, Elsevier, vol. 36(5), pages 3189-3203.
    12. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    13. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    14. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    15. Zhiqi Yan & Shisheng Zhong & Lin Lin & Zhiquan Cui, 2021. "Adaptive Levenberg–Marquardt Algorithm: A New Optimization Strategy for Levenberg–Marquardt Neural Networks," Mathematics, MDPI, vol. 9(17), pages 1-17, September.
    16. Balerna, Camillo & Lanzetti, Nicolas & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher, 2020. "Optimal low-level control strategies for a high-performance hybrid electric power unit," Applied Energy, Elsevier, vol. 276(C).
    17. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    18. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
    19. Arthur H.A. Melani & Carlos A. Murad & Adherbal Caminada Netto & Gilberto F.M. Souza & Silvio I. Nabeta, 2019. "Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower through Generalized Stochastic Petri Nets," Energies, MDPI, vol. 12(10), pages 1-28, May.
    20. Zhang, Weihao & Zou, Zhengping & Ye, Jian, 2012. "Leading-edge redesign of a turbomachinery blade and its effect on aerodynamic performance," Applied Energy, Elsevier, vol. 93(C), pages 655-667.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2621-2627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.