IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v158y2015icp142-156.html
   My bibliography  Save this article

Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies

Author

Listed:
  • Lazrak, Amine
  • Leconte, Antoine
  • Chèze, David
  • Fraisse, Gilles
  • Papillon, Philippe
  • Souyri, Bernard

Abstract

At present there is no reliable approach to model and characterize thermal systems using renewable energy for building applications based on experimental data. The results of the existing approaches are valid only for specific conditions (climate type and thermal building properties). The aim of this paper is to present a generic methodology to evaluate the energy performance of such systems. Artificial neural networks (ANNs) have proved to be suitable to tackle such complex problems, particularly when the system to be modelled is compact and cannot be divided up during the testing stage. Reliable “black box” ANN modelling is able to identify global models of the whole system without any advanced knowledge of its internal operating principles. The knowledge of the system’s global inputs and outputs is sufficient. The proposed methodology is applied to evaluate three different Solar Combisystems (SCSs) combined with a gas boiler or a heat pump (HP) as an auxiliary system. The results show that the best ANN models were able to predict with a satisfactory degree of precision, the annual energy consumption of the all systems except the SCS combined with air source HP, in different conditions, based on a learning sequence lasting only 12days. In fact, the annual energy prediction errors were less than 10% in most cases. The methodology limitations appear in extreme boundary conditions (Barcelona climate) compared to those used during the ANN training process.

Suggested Citation

  • Lazrak, Amine & Leconte, Antoine & Chèze, David & Fraisse, Gilles & Papillon, Philippe & Souyri, Bernard, 2015. "Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies," Applied Energy, Elsevier, vol. 158(C), pages 142-156.
  • Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:142-156
    DOI: 10.1016/j.apenergy.2015.08.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buratti, C. & Barbanera, M. & Palladino, D., 2014. "An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks," Applied Energy, Elsevier, vol. 120(C), pages 125-132.
    2. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    3. Leckner, Mitchell & Zmeureanu, Radu, 2011. "Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem," Applied Energy, Elsevier, vol. 88(1), pages 232-241, January.
    4. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian & Ben-Abdallah, Noureddine, 2014. "Preliminary study for solar combisystem potential in Canadian houses," Applied Energy, Elsevier, vol. 130(C), pages 510-518.
    5. Kalogirou, S.A. & Mathioulakis, E. & Belessiotis, V., 2014. "Artificial neural networks for the performance prediction of large solar systems," Renewable Energy, Elsevier, vol. 63(C), pages 90-97.
    6. Kaygusuz, Kamil, 1995. "Performance of solar-assisted heat-pump systems," Applied Energy, Elsevier, vol. 51(2), pages 93-109.
    7. Kabariti, Malek & Mowafi, Yaser, 1996. "Testing and evaluation of thermosyphon solar water heating system by means of components testing and whole system testing and simulation in Jordan," Renewable Energy, Elsevier, vol. 9(1), pages 594-599.
    8. Kalogirou, Soteris A., 2000. "Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks," Applied Energy, Elsevier, vol. 66(1), pages 63-74, May.
    9. Khosravi, Abbas & Nahavandi, Saeid & Creighton, Doug, 2013. "Quantifying uncertainties of neural network-based electricity price forecasts," Applied Energy, Elsevier, vol. 112(C), pages 120-129.
    10. Qi, Min & Zhang, Guoqiang Peter, 2001. "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, Elsevier, vol. 132(3), pages 666-680, August.
    11. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2009. "Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks," Applied Energy, Elsevier, vol. 86(9), pages 1442-1449, September.
    12. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2014. "A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems," Applied Energy, Elsevier, vol. 114(C), pages 124-134.
    13. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    14. Gang, Wenjie & Wang, Jinbo, 2013. "Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems," Applied Energy, Elsevier, vol. 112(C), pages 1146-1153.
    15. Žandeckis, Aivars & Timma, Lelde & Blumberga, Dagnija & Rochas, Claudio & Rošā, Marika, 2013. "Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler," Applied Energy, Elsevier, vol. 101(C), pages 244-252.
    16. Li, Hong & Yang, Hongxing, 2010. "Study on performance of solar assisted air source heat pump systems for hot water production in Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2818-2825, September.
    17. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    18. Zhang, Xingxing & Zhao, Xudong & Shen, Jingchun & Xu, Jihuan & Yu, Xiaotong, 2014. "Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system," Applied Energy, Elsevier, vol. 114(C), pages 335-352.
    19. Wu, Wei & Wang, Baolong & You, Tian & Shi, Wenxing & Li, Xianting, 2013. "A potential solution for thermal imbalance of ground source heat pump systems in cold regions: Ground source absorption heat pump," Renewable Energy, Elsevier, vol. 59(C), pages 39-48.
    20. Ghorbanian, K. & Gholamrezaei, M., 2009. "An artificial neural network approach to compressor performance prediction," Applied Energy, Elsevier, vol. 86(7-8), pages 1210-1221, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Menegon, Diego & Soppelsa, Anton & Fedrizzi, Roberto, 2017. "Development of a new dynamic test procedure for the laboratory characterization of a whole heating and cooling system," Applied Energy, Elsevier, vol. 205(C), pages 976-990.
    2. Tejeda De La Cruz, Alberto & Riviere, Philippe & Marchio, Dominique & Cauret, Odile & Milu, Anamaria, 2017. "Hardware in the loop test bench using Modelica: A platform to test and improve the control of heating systems," Applied Energy, Elsevier, vol. 188(C), pages 107-120.
    3. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    2. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    3. Zhijian Liu & Hao Li & Xinyu Zhang & Guangya Jin & Kewei Cheng, 2015. "Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine," Energies, MDPI, vol. 8(8), pages 1-21, August.
    4. Gunasekar, N. & Mohanraj, M. & Velmurugan, V., 2015. "Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps," Energy, Elsevier, vol. 93(P1), pages 908-922.
    5. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    7. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    8. Wu, Sheng-Ju & Shiah, Sheau-Wen & Yu, Wei-Lung, 2009. "Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network," Renewable Energy, Elsevier, vol. 34(1), pages 135-144.
    9. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    10. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    11. Lazrak, Amine & Boudehenn, François & Bonnot, Sylvain & Fraisse, Gilles & Leconte, Antoine & Papillon, Philippe & Souyri, Bernard, 2016. "Development of a dynamic artificial neural network model of an absorption chiller and its experimental validation," Renewable Energy, Elsevier, vol. 86(C), pages 1009-1022.
    12. Kalogirou, S.A. & Mathioulakis, E. & Belessiotis, V., 2014. "Artificial neural networks for the performance prediction of large solar systems," Renewable Energy, Elsevier, vol. 63(C), pages 90-97.
    13. Altan Dombaycı, Ömer & Gölcü, Mustafa, 2009. "Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1158-1161.
    14. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    15. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    16. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    17. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2006. "Thermodynamic analysis of absorption systems using artificial neural network," Renewable Energy, Elsevier, vol. 31(1), pages 29-43.
    18. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    19. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
    20. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:158:y:2015:i:c:p:142-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.