Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Bauer, Nico & Bosetti, Valentina & Hamdi-Cherif, Meriem & Kitous, Alban & McCollum, David & Méjean, Aurélie & Rao, Shilpa & Turton, Hal & Paroussos, Leonidas & Ashina, Shuichi & Calvin, Katherine & Wa, 2015.
"CO2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies,"
Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 243-256.
- Nico Bauer & Valentina Bosetti & Meriem Hamdi-Cherif & Alban Kitous & David Mccollum & Aurélie Méjean & Shilpa Rao & Hal Turton & Leonidas Paroussos & Shuichi Ashina & Katherine Calvin & Kenichi Wada , 2015. "CO 2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies," Post-Print hal-01586814, HAL.
- Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
- Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
- Salcedo-Sanz, Sancho & Ángel M. Pérez-Bellido, & Ortiz-García, Emilio G. & Portilla-Figueras, Antonio & Prieto, Luis & Paredes, Daniel, 2009. "Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction," Renewable Energy, Elsevier, vol. 34(6), pages 1451-1457.
- Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
- Milanese, Marco & Tornese, Ljuba & Colangelo, Gianpiero & Laforgia, Domenico & de Risi, Arturo, 2017. "Numerical method for wind energy analysis applied to Apulia Region, Italy," Energy, Elsevier, vol. 128(C), pages 1-10.
- Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
- Colmenar-Santos, Antonio & Perera-Perez, Javier & Borge-Diez, David & dePalacio-Rodríguez, Carlos, 2016. "Offshore wind energy: A review of the current status, challenges and future development in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 1-18.
- Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
- Erfan Mohagheghi & Aouss Gabash & Pu Li, 2017. "A Framework for Real-Time Optimal Power Flow under Wind Energy Penetration," Energies, MDPI, vol. 10(4), pages 1-28, April.
- Dorado-Moreno, M. & Cornejo-Bueno, L. & Gutiérrez, P.A. & Prieto, L. & Hervás-Martínez, C. & Salcedo-Sanz, S., 2017. "Robust estimation of wind power ramp events with reservoir computing," Renewable Energy, Elsevier, vol. 111(C), pages 428-437.
- Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
- Morris Brenna & Federica Foiadelli & Michela Longo & Dario Zaninelli, 2017. "Improvement of Wind Energy Production through HVDC Systems," Energies, MDPI, vol. 10(2), pages 1-25, January.
- Drew, Daniel R. & Cannon, Dirk J. & Barlow, Janet F. & Coker, Phil J. & Frame, Thomas H.A., 2017. "The importance of forecasting regional wind power ramping: A case study for the UK," Renewable Energy, Elsevier, vol. 114(PB), pages 1201-1208.
- Alizadeh, M.I. & Parsa Moghaddam, M. & Amjady, N. & Siano, P. & Sheikh-El-Eslami, M.K., 2016. "Flexibility in future power systems with high renewable penetration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1186-1193.
- Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
- Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
- Nico Bauer & Valentina Bosetti & Meriem Hamdi-Cherif & Alban Kitous & David L Mccollum & Aurélie Méjean & Shilpa Rao & Hal Turton & Leonidas Paroussos & Shuichi Ashina & Katherine Calvin & Kenichi Wad, 2015. "CO2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies," Post-Print hal-01086076, HAL.
- Gough, Rebecca & Dickerson, Charles & Rowley, Paul & Walsh, Chris, 2017. "Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage," Applied Energy, Elsevier, vol. 192(C), pages 12-23.
- Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
- Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
- Jangid, Jayant & Bera, Apurba Kumar & Joseph, Manoj & Singh, Vishal & Singh, T.P. & Pradhan, B.K. & Das, Sandipan, 2016. "Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1-10.
- Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2017. "Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology," Energy, Elsevier, vol. 120(C), pages 608-618.
- Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
- Ohba, Masamichi & Kadokura, Shinji & Nohara, Daisuke, 2016. "Impacts of synoptic circulation patterns on wind power ramp events in East Japan," Renewable Energy, Elsevier, vol. 96(PA), pages 591-602.
- Simões, Teresa & Estanqueiro, Ana, 2016. "A new methodology for urban wind resource assessment," Renewable Energy, Elsevier, vol. 89(C), pages 598-605.
- Zhang, Jie & Cui, Mingjian & Hodge, Bri-Mathias & Florita, Anthony & Freedman, Jeffrey, 2017. "Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales," Energy, Elsevier, vol. 122(C), pages 528-541.
- Gallego-Castillo, Cristobal & Cuerva-Tejero, Alvaro & Lopez-Garcia, Oscar, 2015. "A review on the recent history of wind power ramp forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1148-1157.
- Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
- Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
- Lucas Cuadra & Miguel Del Pino & José Carlos Nieto-Borge & Sancho Salcedo-Sanz, 2017. "Optimizing the Structure of Distribution Smart Grids with Renewable Generation against Abnormal Conditions: A Complex Networks Approach with Evolutionary Algorithms," Energies, MDPI, vol. 10(8), pages 1-31, July.
- Costa, Alexandre & Crespo, Antonio & Navarro, Jorge & Lizcano, Gil & Madsen, Henrik & Feitosa, Everaldo, 2008. "A review on the young history of the wind power short-term prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1725-1744, August.
- Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
- Salcedo-Sanz, S. & Pastor-Sánchez, A. & Del Ser, J. & Prieto, L. & Geem, Z.W., 2015. "A Coral Reefs Optimization algorithm with Harmony Search operators for accurate wind speed prediction," Renewable Energy, Elsevier, vol. 75(C), pages 93-101.
- Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
- Botterud, Audun & Wang, Jianhui & Miranda, Vladimiro & Bessa, Ricardo J., 2010. "Wind Power Forecasting in U.S. Electricity Markets," The Electricity Journal, Elsevier, vol. 23(3), pages 71-82, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ning Li & Fuxing He & Wentao Ma, 2019. "Wind Power Prediction Based on Extreme Learning Machine with Kernel Mean p -Power Error Loss," Energies, MDPI, vol. 12(4), pages 1-19, February.
- Kena Likassa Nefabas & Lennart Söder & Mengesha Mamo & Jon Olauson, 2021. "Modeling of Ethiopian Wind Power Production Using ERA5 Reanalysis Data," Energies, MDPI, vol. 14(9), pages 1-17, April.
- Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
- Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
- Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lucas Cuadra & Miguel Del Pino & José Carlos Nieto-Borge & Sancho Salcedo-Sanz, 2017. "Optimizing the Structure of Distribution Smart Grids with Renewable Generation against Abnormal Conditions: A Complex Networks Approach with Evolutionary Algorithms," Energies, MDPI, vol. 10(8), pages 1-31, July.
- Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
- González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Peláez-Rodríguez, C. & Pérez-Aracil, J. & Fister, D. & Prieto-Godino, L. & Deo, R.C. & Salcedo-Sanz, S., 2022. "A hierarchical classification/regression algorithm for improving extreme wind speed events prediction," Renewable Energy, Elsevier, vol. 201(P2), pages 157-178.
- Wang, Yun & Hu, Qinghua & Meng, Deyu & Zhu, Pengfei, 2017. "Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model," Applied Energy, Elsevier, vol. 208(C), pages 1097-1112.
- Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
- Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
- Zhang, Jie & Cui, Mingjian & Hodge, Bri-Mathias & Florita, Anthony & Freedman, Jeffrey, 2017. "Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales," Energy, Elsevier, vol. 122(C), pages 528-541.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
- Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
- Lee, Joseph C.Y. & Draxl, Caroline & Berg, Larry K., 2022. "Evaluating wind speed and power forecasts for wind energy applications using an open-source and systematic validation framework," Renewable Energy, Elsevier, vol. 200(C), pages 457-475.
- Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
- Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
- Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
- Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
- Dong, Qingli & Sun, Yuhuan & Li, Peizhi, 2017. "A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China," Renewable Energy, Elsevier, vol. 102(PA), pages 241-257.
- Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren & Söder, Lennart, 2018. "Analysis of wind power intermittency based on historical wind power data," Energy, Elsevier, vol. 150(C), pages 482-492.
More about this item
Keywords
wind energy; wind power ramp events; machine learning regressors; reanalysis; Gaussian processes; support vector machines; neural networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1784-:d:117810. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.