IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp724-735.html
   My bibliography  Save this article

A novel method to optimize electricity generation from wind energy

Author

Listed:
  • Vogel, E.E.
  • Saravia, G.
  • Kobe, S.
  • Schumann, R.
  • Schuster, R.

Abstract

We present and discuss a new technique based on information theory to detect in advance favorable periods of wind activity (positive ramps) for electricity generation. In addition this technique could also help in the analysis of plant operation and management protocols design. Real data from wind power plants in Germany is used; this information is freely available in the internet with reliable registers every 15 min. A simple protocol to mix such wind energy production with electricity coming from conventional sources is proposed as a way to test the proposed algorithm. The eight-year period 2010–2017 is analyzed looking for different behaviors in wind activity. The first five years (2010–2014) are employed to calibrate the method, while the remaining three years (2015–2017) are used to test previous calibration without any further variation in the tuning possibilities described below.

Suggested Citation

  • Vogel, E.E. & Saravia, G. & Kobe, S. & Schumann, R. & Schuster, R., 2018. "A novel method to optimize electricity generation from wind energy," Renewable Energy, Elsevier, vol. 126(C), pages 724-735.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:724-735
    DOI: 10.1016/j.renene.2018.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    2. Ren, Ye & Suganthan, P.N. & Srikanth, N., 2015. "Ensemble methods for wind and solar power forecasting—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 82-91.
    3. Vogel, E.E. & Saravia, G. & Astete, J. & Díaz, J. & Riadi, F., 2015. "Information theory as a tool to improve individual pensions: The Chilean case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 372-382.
    4. Eugenio Vogel & Gonzalo Saravia, 2014. "Information theory applied to econophysics: stock market behaviors," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(8), pages 1-15, August.
    5. Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
    6. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    7. Sun, Gaiping & Jiang, Chuanwen & Cheng, Pan & Liu, Yangyang & Wang, Xu & Fu, Yang & He, Yang, 2018. "Short-term wind power forecasts by a synthetical similar time series data mining method," Renewable Energy, Elsevier, vol. 115(C), pages 575-584.
    8. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    9. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
    10. Feng, Yonghan & Ryan, Sarah M., 2016. "Day-ahead hourly electricity load modeling by functional regression," Applied Energy, Elsevier, vol. 170(C), pages 455-465.
    11. Daniel Ambach & Carsten Croonenbroeck, 2016. "Space-time short- to medium-term wind speed forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 5-20, March.
    12. Vogel, E.E. & Saravia, G. & Cortez, L.V., 2012. "Data compressor designed to improve recognition of magnetic phases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1591-1601.
    13. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
    14. Daniel Ambach, 2016. "Short-term wind speed forecasting in Germany," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(2), pages 351-369, February.
    15. Vogel, E.E. & Saravia, G. & Bachmann, F. & Fierro, B. & Fischer, Janine, 2009. "Phase transitions in Edwards–Anderson model by means of information theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4075-4082.
    16. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    17. Gallego-Castillo, Cristobal & Cuerva-Tejero, Alvaro & Lopez-Garcia, Oscar, 2015. "A review on the recent history of wind power ramp forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1148-1157.
    18. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    19. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods," Energy, Elsevier, vol. 36(7), pages 3968-3978.
    20. Daniel Ambach & Carsten Croonenbroeck, 2016. "Space-time short- to medium-term wind speed forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 5-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdolahi-Mansoorkhani, Hamed & Seddighi, Sadegh, 2019. "H2S and CO2 capture from gaseous fuels using nanoparticle membrane," Energy, Elsevier, vol. 168(C), pages 847-857.
    2. Cheng, Shulei & Wu, Yinyin & Chen, Hua & Chen, Jiandong & Song, Malin & Hou, Wenxuan, 2019. "Determinants of changes in electricity generation intensity among different power sectors," Energy Policy, Elsevier, vol. 130(C), pages 389-408.
    3. Gaigalis, Vygandas & Katinas, Vladislovas, 2020. "Analysis of the renewable energy implementation and prediction prospects in compliance with the EU policy: A case of Lithuania," Renewable Energy, Elsevier, vol. 151(C), pages 1016-1027.
    4. Pasten, Denisse & Saravia, Gonzalo & Vogel, Eugenio E. & Posadas, Antonio, 2022. "Information theory and earthquakes: Depth propagation seismicity in northern Chile," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    2. Ambach, Daniel & Schmid, Wolfgang, 2017. "A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting," Energy, Elsevier, vol. 135(C), pages 833-850.
    3. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    4. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    5. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    6. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Yang, Qibo & Hsu, Yuan-Ming & Chen, Yudi & Lee, Jay, 2019. "A combined filtering strategy for short term and long term wind speed prediction with improved accuracy," Renewable Energy, Elsevier, vol. 136(C), pages 1082-1090.
    7. Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
    8. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    9. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    11. Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
    12. Pasten, Denisse & Saravia, Gonzalo & Vogel, Eugenio E. & Posadas, Antonio, 2022. "Information theory and earthquakes: Depth propagation seismicity in northern Chile," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    13. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    14. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    15. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    16. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang & Zhang, Yixin, 2015. "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 78(C), pages 374-385.
    17. Chiou-Jye Huang & Ping-Huan Kuo, 2018. "A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    18. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    19. Jin, Huaiping & Shi, Lixian & Chen, Xiangguang & Qian, Bin & Yang, Biao & Jin, Huaikang, 2021. "Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models," Renewable Energy, Elsevier, vol. 174(C), pages 1-18.
    20. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:724-735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.