IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp476-485.html
   My bibliography  Save this article

Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India

Author

Listed:
  • Sharma, Vikrant
  • Chandel, S.S.

Abstract

The performance analysis of a 190 kWp solar photovoltaic power plant installed at Khatkar-Kalan, India, is carried out. The final yield, reference yield and performance ratio, are found to vary from 1.45 to 2.84 kWh/kWp-day, 2.29 to 3.53 kWh/kWp-day and 55–83% respectively. The annual average performance ratio, capacity factor and system efficiency are found to be 74%, 9.27% and 8.3% respectively. The average annual measured energy yield of the plant is found to be 812.76 kWh/kWp. The average annual predicted energy yield is found to be 823 kWh/kWp using PVSYST. The estimated energy yield is in close agreement with measured results with an uncertainty of 1.4%. The total estimated system losses due to irradiance, temperature, module quality, array mismatch, ohmic wiring and inverter, are found to be 31.7%. The study shows that energy generated is maximum during March, September, and October and minimum in January. The performance of the system is compared with PV systems installed worldwide and found comparable. The results presented provide insight to the long-term performance of the solar power plant under actual operating conditions in India. The need for optimizing solar panel inclination is emphasized for maximizing power generation. Further, follow-up research studies are also identified.

Suggested Citation

  • Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:476-485
    DOI: 10.1016/j.energy.2013.03.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sidrach-de-Cardona, M & Mora López, Ll, 1999. "Performance analysis of a grid-connected photovoltaic system," Energy, Elsevier, vol. 24(2), pages 93-102.
    2. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    3. Pietruszko, S. M. & Gradzki, M., 2003. "Performance of a grid connected small PV system in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 177-184, January.
    4. Stoppato, A., 2008. "Life cycle assessment of photovoltaic electricity generation," Energy, Elsevier, vol. 33(2), pages 224-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    2. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    3. Atsu, Divine & Seres, Istvan & Farkas, Istvan, 2021. "The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    5. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    6. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    7. Dobaria, Bhaveshkumar & Pandya, Mahesh & Aware, Mohan, 2016. "Analytical assessment of 5.05 kWp grid tied photovoltaic plant performance on the system level in a composite climate of western India," Energy, Elsevier, vol. 111(C), pages 47-51.
    8. Mpholo, Moeketsi & Nchaba, Teboho & Monese, Molebatsi, 2015. "Yield and performance analysis of the first grid-connected solar farm at Moshoeshoe I International Airport, Lesotho," Renewable Energy, Elsevier, vol. 81(C), pages 845-852.
    9. Paudel, Ananda Mani & Sarper, Hűseyin, 2013. "Economic analysis of a grid-connected commercial photovoltaic system at Colorado State University-Pueblo," Energy, Elsevier, vol. 52(C), pages 289-296.
    10. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    11. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    12. Ephraim Bonah Agyekum & Usman Mehmood & Salah Kamel & Mokhtar Shouran & Elmazeg Elgamli & Tomiwa Sunday Adebayo, 2022. "Technical Performance Prediction and Employment Potential of Solar PV Systems in Cold Countries," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    13. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    14. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    15. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    16. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    17. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    18. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    19. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    20. Wang, Zanxin & Wei, Wei, 2017. "External cost of photovoltaic oriented silicon production: A case in China," Energy Policy, Elsevier, vol. 107(C), pages 437-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:476-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.