IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006773.html
   My bibliography  Save this article

Experimental and numerical approach for the evaluation of PV-system performance on energy and environmental behavior of nearly zero energy buildings: Case study in Mediterranean climate

Author

Listed:
  • De Masi, Rosa Francesca
  • Gigante, Antonio
  • Ruggiero, Silvia
  • Vanoli, Giuseppe Peter

Abstract

Nowadays, the performance of photovoltaic (PV) systems has strategic role for satisfying the standard of net or nearly zero energy building with in-situ production. In this frame, the novelty of the paper is the proposal of a combined experimental and numerical approach for evaluating the mismatch between PV production and consumptions during design, operational and future performance under expected emissions scenarios. First of all, it proposes a comparison of production estimation by means of several tools for the evaluation of the energy balance in the design phase; then the expected and real behavior is compared with also the evaluation of the performance ratio (PR) evolution as function of cell temperature. Finally, a sensitivity analysis is proposed in the short and medium scenarios by varying the size of installed system and considering the degradation rate under future weather conditions. The approach is applied to a case study in a typical Mediterranean climate, starting from the monitoring data available for the building energy request and the renewable production (2016–2022). The results of the case study indicate that the PR greatly influences the performance, mainly under expected climate changes, since the operational emissions could increase of more than 15 % compared to actual performance also if the zero energy balance is satisfied. Furthermore, through a sensitivity analysis on the PV-system size, the study demonstrates that with a maximum linear degradation rate of 1.51 %/year, the building could be configured as nearly zero energy in the medium term (20 years) also with lower peak power. The analysis also suggests that the maximization of installed power is a prerequisite to follow the implementation of positive energy goal because, under all considered climatic evolutions it can balance the penalties both due to technical aspects that to modification of consumption and production profiles.

Suggested Citation

  • De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2024. "Experimental and numerical approach for the evaluation of PV-system performance on energy and environmental behavior of nearly zero energy buildings: Case study in Mediterranean climate," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006773
    DOI: 10.1016/j.renene.2024.120609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    2. Editors, 2023. "Software updates," Stata Journal, StataCorp LP, vol. 23(2), pages 595-596, June.
    3. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    4. Mateo, C. & Hernández-Fenollosa, M.A. & Montero, Á. & Seguí-Chilet, S., 2022. "Ageing and seasonal effects on amorphous silicon photovoltaic modules in a Mediterranean climate," Renewable Energy, Elsevier, vol. 186(C), pages 74-88.
    5. Rajput, Pramod & Tiwari, G.N. & Sastry, O.S., 2017. "Thermal modelling with experimental validation and economic analysis of mono crystalline silicon photovoltaic module on the basis of degradation study," Energy, Elsevier, vol. 120(C), pages 731-739.
    6. Savvides, Andreas & Vassiliades, Constantinos & Michael, Aimilios & Kalogirou, Soteris, 2019. "Siting and building-massing considerations for the urban integration of active solar energy systems," Renewable Energy, Elsevier, vol. 135(C), pages 963-974.
    7. Notton, G. & Lazarov, V. & Stoyanov, L., 2010. "Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations," Renewable Energy, Elsevier, vol. 35(2), pages 541-554.
    8. Dag, H.I. & Buker, M.S., 2020. "Performance evaluation and degradation assessment of crystalline silicon based photovoltaic rooftop technologies under outdoor conditions," Renewable Energy, Elsevier, vol. 156(C), pages 1292-1300.
    9. Aruta, Giuseppe & Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria, 2023. "Sustainability and energy communities: Assessing the potential of building energy retrofit and renewables to lead the local energy transition," Energy, Elsevier, vol. 282(C).
    10. Editors, 2023. "Software updates," Stata Journal, StataCorp LP, vol. 23(1), pages 298-299, March.
    11. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
    12. Elsabahy, Mohamed M. & Emam, Mohamed & Sekiguchi, Hidetoshi & Ahmed, Mahmoud, 2024. "Performance mapping of silicon-based solar cell for efficient power generation and thermal utilization: Effect of cell encapsulation, temperature coefficient, and reference efficiency," Applied Energy, Elsevier, vol. 356(C).
    13. Phuong Minh Khuong & Russell McKenna & Wolf Fichtner, 2020. "A Cost-Effective and Transferable Methodology for Rooftop PV Potential Assessment in Developing Countries," Energies, MDPI, vol. 13(10), pages 1-46, May.
    14. Olczak, Piotr, 2023. "Evaluation of degradation energy productivity of photovoltaic installations in long-term case study," Applied Energy, Elsevier, vol. 343(C).
    15. Ozden, Talat & Akinoglu, Bulent G. & Turan, Rasit, 2017. "Long term outdoor performances of three different on-grid PV arrays in central Anatolia – An extended analysis," Renewable Energy, Elsevier, vol. 101(C), pages 182-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ameur, Arechkik & Berrada, Asmae & Bouaichi, Abdellatif & Loudiyi, Khalid, 2022. "Long-term performance and degradation analysis of different PV modules under temperate climate," Renewable Energy, Elsevier, vol. 188(C), pages 37-51.
    2. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    3. Žižak, Tej & Domjan, Suzana & Medved, Sašo & Arkar, Ciril, 2022. "Efficiency and sustainability assessment of evaporative cooling of photovoltaics," Energy, Elsevier, vol. 254(PA).
    4. Wang, H.X. & Muñoz-García, M.A. & Moreda, G.P. & Alonso-García, M.C., 2018. "Optimum inverter sizing of grid-connected photovoltaic systems based on energetic and economic considerations," Renewable Energy, Elsevier, vol. 118(C), pages 709-717.
    5. Duan, Xiaojian & Shen, Chao & Liu, Dingming & Wu, Yupeng, 2023. "The performance analysis of a photo/thermal catalytic Trombe wall with energy generation," Renewable Energy, Elsevier, vol. 218(C).
    6. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    7. Singh, Shravan Kumar & Chander, Nikhil, 2022. "Mid-life degradation evaluation of polycrystalline Si solar photovoltaic modules in a 100 kWp grid-tied system in east-central India," Renewable Energy, Elsevier, vol. 199(C), pages 351-367.
    8. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    10. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    11. Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
    12. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    13. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    14. Duchaud, Jean-Laurent & Notton, Gilles & Darras, Christophe & Voyant, Cyril, 2019. "Multi-Objective Particle Swarm optimal sizing of a renewable hybrid power plant with storage," Renewable Energy, Elsevier, vol. 131(C), pages 1156-1167.
    15. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive decoupled control of 4-leg voltage-source inverters for standalone photovoltaic systems: Adjusting transient state response," Renewable Energy, Elsevier, vol. 36(10), pages 2733-2741.
    16. Wei, Haokun & Liu, Jian & Yang, Biao, 2014. "Cost-benefit comparison between Domestic Solar Water Heater (DSHW) and Building Integrated Photovoltaic (BIPV) systems for households in urban China," Applied Energy, Elsevier, vol. 126(C), pages 47-55.
    17. Simone Giostra & Gabriele Masera & Rafaella Monteiro, 2022. "Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    18. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    19. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    20. Chang-Gi Min & Jong Keun Park & Don Hur & Mun-Kyeom Kim, 2015. "The Economic Viability of Renewable Portfolio Standard Support for Offshore Wind Farm Projects in Korea," Energies, MDPI, vol. 8(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.