IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp312-323.html
   My bibliography  Save this article

Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale

Author

Listed:
  • Shen, Yafei
  • Yu, Shili
  • Ge, Shun
  • Chen, Xingming
  • Ge, Xinlei
  • Chen, Mindong

Abstract

An alternative way has been proposed for the PVC-containing medical wastes valorization by co-hydrothermal carbonization (HTC) with lignocellulosic biomass. The organic-Cl in PVC can be converted to the inorganic-Cl via hydrolysis, defunctionalization, recondensation, and aromatization in the HTC process. Followed by the washing process with the condensed water, the inorganic-Cl with high water-solubility could be removed from the solid products (i.e. hydrochar). Lignin as a biomass component can significantly improve the dechlorination efficiency of PVC in the HTC process. Here, the dechlorination performance of lignocellulosic components is given as the following order: lignin > cellulose > hemicellulose. In addition, lignin can adjust the particle sizes of solid products by inhibiting the agglomeration in the order of lignin > hemicellulose > cellulose. In the pilot-scale HTC process, the addition of woodchips improves the dechlorination efficiency of hospital wastes (HW). The hydrochar particles with low-chlorine content and higher heating value could be used as a clean coal-alternative fuel.

Suggested Citation

  • Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:312-323
    DOI: 10.1016/j.energy.2016.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Shimin & Li, Xianglan & Fan, Juan & Chang, Jie, 2013. "Hydrothermal conversion of lignin: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 546-558.
    2. Lu, Liang & Namioka, Tomoaki & Yoshikawa, Kunio, 2011. "Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes," Applied Energy, Elsevier, vol. 88(11), pages 3659-3664.
    3. Muthuraman, Marisamy & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis," Applied Energy, Elsevier, vol. 87(1), pages 141-148, January.
    4. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    5. Holtmeyer, Melissa L. & Kumfer, Benjamin M. & Axelbaum, Richard L., 2012. "Effects of biomass particle size during cofiring under air-fired and oxyfuel conditions," Applied Energy, Elsevier, vol. 93(C), pages 606-613.
    6. Prawisudha, Pandji & Namioka, Tomoaki & Yoshikawa, Kunio, 2012. "Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment," Applied Energy, Elsevier, vol. 90(1), pages 298-304.
    7. Álvarez-Murillo, A. & Sabio, E. & Ledesma, B. & Román, S. & González-García, C.M., 2016. "Generation of biofuel from hydrothermal carbonization of cellulose. Kinetics modelling," Energy, Elsevier, vol. 94(C), pages 600-608.
    8. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    9. Kambo, Harpreet Singh & Dutta, Animesh, 2014. "Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization," Applied Energy, Elsevier, vol. 135(C), pages 182-191.
    10. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    11. Jin, Yuqi & Lu, Liang & Ma, Xiaojun & Liu, Hongmei & Chi, Yong & Yoshikawa, Kunio, 2013. "Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor," Applied Energy, Elsevier, vol. 102(C), pages 563-570.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
    2. Wilk, Małgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.
    3. Huang, Neng & Zhao, Peitao & Ghosh, Sudip & Fedyukhin, Alexander, 2019. "Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production," Applied Energy, Elsevier, vol. 240(C), pages 882-892.
    4. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
    5. Yao, Zhongliang & Ma, Xiaoqian, 2017. "A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis," Energy, Elsevier, vol. 141(C), pages 1156-1165.
    6. Yang, Fangming & Liu, Xin & Li, Mengbin & Uguna, Clement & Wang, Wenlong & Sun, Chenggong, 2023. "Polyvinyl chloride (PVC) derived microporous carbons prepared via hydrothermal dechlorination and potassium hydroxide activation for efficient CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    7. Ning, Xiaojun & Dang, Han & Xu, Runsheng & Wang, Guangwei & Zhang, Jianliang & Zhang, Nan & Wang, Chuan, 2022. "Co-hydrothermal carbonization of biomass and PVC for clean blast furnace injection fuel production: Experiment and DFT calculation," Renewable Energy, Elsevier, vol. 187(C), pages 156-168.
    8. Lin, Yousheng & Ge, Ya & Xiao, Hanmin & He, Qing & Wang, Wenhao & Chen, Baiman, 2020. "Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes," Energy, Elsevier, vol. 210(C).
    9. Akbar Saba & Kyle McGaughy & M. Toufiq Reza, 2019. "Techno-Economic Assessment of Co-Hydrothermal Carbonization of a Coal-Miscanthus Blend," Energies, MDPI, vol. 12(4), pages 1-17, February.
    10. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Yin Ting Chu & Jianzhao Zhou & Yuan Wang & Yue Liu & Jingzheng Ren, 2023. "Current State, Development and Future Directions of Medical Waste Valorization," Energies, MDPI, vol. 16(3), pages 1-28, January.
    12. Wei, Yingyuan & Fakudze, Sandile & Zhang, Yiming & Ma, Ru & Shang, Qianqian & Chen, Jianqiang & Liu, Chengguo & Chu, Qiulu, 2022. "Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination," Energy, Elsevier, vol. 239(PD).
    13. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    14. Georgios Giakoumakis & Dorothea Politi & Dimitrios Sidiras, 2021. "Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review," Energies, MDPI, vol. 14(23), pages 1-30, December.
    15. Govindarajan Venkatesh & Kodigal A. Gopinath & Kotha Sammi Reddy & Baddigam Sanjeeva Reddy & Mathyam Prabhakar & Cherukumalli Srinivasarao & Venugopalan Visha Kumari & Vinod Kumar Singh, 2022. "Characterization of Biochar Derived from Crop Residues for Soil Amendment, Carbon Sequestration and Energy Use," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    16. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    17. Florentios Economou & Irene Voukkali & Iliana Papamichael & Valentina Phinikettou & Pantelitsa Loizia & Vincenzo Naddeo & Paolo Sospiro & Marco Ciro Liscio & Christos Zoumides & Diana Mihaela Țîrcă & , 2024. "Turning Food Loss and Food Waste into Watts: A Review of Food Waste as an Energy Source," Energies, MDPI, vol. 17(13), pages 1-32, June.
    18. Gao, Ying & Liu, Yinghui & Zhu, Guangkuo & Xu, Jiayu & xu, Hui & Yuan, Qiaoxia & Zhu, Yuezhao & Sarma, Jyotirmoy & Wang, Yinfeng & Wang, Jing & Ji, Lian, 2018. "Microwave-assisted hydrothermal carbonization of dairy manure: Chemical and structural properties of the products," Energy, Elsevier, vol. 165(PB), pages 662-672.
    19. Nallagatla Vinod Kumar & Gajanan L. Sawargaonkar & C. Sudha Rani & Ajay Singh & T. Ram Prakash & S. Triveni & Prasad J. Kamdi & Rajesh Pasumarthi & Rayapati Karthik & Bathula Venkatesh, 2023. "Comparative Analysis of Pigeonpea Stalk Biochar Characteristics and Energy Use under Different Biochar Production Methods," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    20. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    21. Tu, Ren & Sun, Yan & Wu, Yujian & Fan, Xudong & Cheng, Shuchao & Jiang, Enchen & Xu, Xiwei, 2021. "Selective production of furfural and phenols from rice husk: the influence of synergetic pretreatments with different order," Renewable Energy, Elsevier, vol. 168(C), pages 297-308.
    22. Da-Hee An & Dong-Chil Chang & Kwang-Soo Kim & Ji-Eun Lee & Young-Lok Cha & Jae-Hee Jeong & Ji-Bong Choi & Soo-Yeon Kim, 2023. "Miscanthus-Derived Biochar Enhanced Soil Fertility and Soybean Growth in Upland Soil," Agriculture, MDPI, vol. 13(9), pages 1-12, September.
    23. Gianluigi Farru & Judy A. Libra & Kyoung S. Ro & Carla Cannas & Claudio Cara & Aldo Muntoni & Martina Piredda & Giovanna Cappai, 2023. "Valorization of Face Masks Produced during COVID-19 Pandemic through Hydrothermal Carbonization (HTC): A Preliminary Study," Sustainability, MDPI, vol. 15(12), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    3. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    4. Peng, Nana & Liu, Zhengang & Liu, Tingting & Gai, Chao, 2016. "Emissions of polycyclic aromatic hydrocarbons (PAHs) during hydrothermally treated municipal solid waste combustion for energy generation," Applied Energy, Elsevier, vol. 184(C), pages 396-403.
    5. Ismail, Tamer M. & Yoshikawa, Kunio & Sherif, Hisham & Abd El-Salam, M., 2019. "Hydrothermal treatment of municipal solid waste into coal in a commercial Plant: Numerical assessment of process parameters," Applied Energy, Elsevier, vol. 250(C), pages 653-664.
    6. Baskoro Lokahita, & Muhammad Aziz, & Yoshikawa, Kunio & Takahashi, Fumitake, 2017. "Energy and resource recovery from Tetra Pak waste using hydrothermal treatment," Applied Energy, Elsevier, vol. 207(C), pages 107-113.
    7. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    8. Hrnčič, Maša Knez & Kravanja, Gregor & Knez, Željko, 2016. "Hydrothermal treatment of biomass for energy and chemicals," Energy, Elsevier, vol. 116(P2), pages 1312-1322.
    9. Zhao, Peitao & Chen, Hongfang & Ge, Shifu & Yoshikawa, Kunio, 2013. "Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion," Applied Energy, Elsevier, vol. 111(C), pages 199-205.
    10. Jin, Yuqi & Lu, Liang & Ma, Xiaojun & Liu, Hongmei & Chi, Yong & Yoshikawa, Kunio, 2013. "Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor," Applied Energy, Elsevier, vol. 102(C), pages 563-570.
    11. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    12. Zhang, Chaoyue & Ma, Xiaoqian & Chen, Xinfei & Tian, Yunlong & Zhou, Yi & Lu, Xiaoluan & Huang, Tao, 2020. "Conversion of water hyacinth to value-added fuel via hydrothermal carbonization," Energy, Elsevier, vol. 197(C).
    13. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    14. Mäkelä, Mikko & Yoshikawa, Kunio, 2016. "Simulating hydrothermal treatment of sludge within a pulp and paper mill," Applied Energy, Elsevier, vol. 173(C), pages 177-183.
    15. Ma, Peiyong & Yang, Jing & Xing, Xianjun & Weihrich, Sebastian & Fan, Fangyu & Zhang, Xianwen, 2017. "Isoconversional kinetics and characteristics of combustion on hydrothermally treated biomass," Renewable Energy, Elsevier, vol. 114(PB), pages 1069-1076.
    16. He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
    17. Danso-Boateng, E. & Holdich, R.G. & Shama, G. & Wheatley, A.D. & Sohail, M. & Martin, S.J., 2013. "Kinetics of faecal biomass hydrothermal carbonisation for hydrochar production," Applied Energy, Elsevier, vol. 111(C), pages 351-357.
    18. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    19. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    20. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:312-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.