IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v90y2012i1p298-304.html
   My bibliography  Save this article

Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment

Author

Listed:
  • Prawisudha, Pandji
  • Namioka, Tomoaki
  • Yoshikawa, Kunio

Abstract

An experimental study of the conversion of Japanese municipal solid waste (MSW) to solid fuel by using an innovative hydrothermal treatment has been performed. The treatment system is capable of processing up to 1 ton MSW per batch, applies medium-pressure saturated steam at the pressure of approximately 2MPa in a stirred reactor for one hour. After undergoing the process, MSWs of various sizes and forms became slump materials that were easily dryable to a powdery product with a 10% moisture content and an average heating value of 20MJ/kg (dry basis), which is equal to that of low-grade sub-bituminous coal. Because the MSW used in the experiments contained a significant amount of plastics, the reduction of chlorine content, which is known to promote clogging, corrosion, and dioxin formation in the furnace, was imperative. It was observed that water-insoluble organic chlorine generated from poly vinyl chloride containers was approximately 10,000ppm (dry basis) in the raw MSW and was reduced to approximately 2000ppm (dry basis) because of the transformation to water-soluble inorganic chlorine during the hydrothermal process. These changes in chlorine content were very evident at elevated temperature and pressure. These results indicate that the hydrothermal treatment is a viable way to treat MSW and obtain an alternative low chlorine content solid fuel.

Suggested Citation

  • Prawisudha, Pandji & Namioka, Tomoaki & Yoshikawa, Kunio, 2012. "Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment," Applied Energy, Elsevier, vol. 90(1), pages 298-304.
  • Handle: RePEc:eee:appene:v:90:y:2012:i:1:p:298-304
    DOI: 10.1016/j.apenergy.2011.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911001784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muthuraman, Marisamy & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis," Applied Energy, Elsevier, vol. 87(1), pages 141-148, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail, Tamer M. & Yoshikawa, Kunio & Sherif, Hisham & Abd El-Salam, M., 2019. "Hydrothermal treatment of municipal solid waste into coal in a commercial Plant: Numerical assessment of process parameters," Applied Energy, Elsevier, vol. 250(C), pages 653-664.
    2. Baskoro Lokahita, & Muhammad Aziz, & Yoshikawa, Kunio & Takahashi, Fumitake, 2017. "Energy and resource recovery from Tetra Pak waste using hydrothermal treatment," Applied Energy, Elsevier, vol. 207(C), pages 107-113.
    3. Jin, Yuqi & Lu, Liang & Ma, Xiaojun & Liu, Hongmei & Chi, Yong & Yoshikawa, Kunio, 2013. "Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor," Applied Energy, Elsevier, vol. 102(C), pages 563-570.
    4. Zhao, Peitao & Ge, Shifu & Yoshikawa, Kunio, 2013. "An orthogonal experimental study on solid fuel production from sewage sludge by employing steam explosion," Applied Energy, Elsevier, vol. 112(C), pages 1213-1221.
    5. Danso-Boateng, E. & Holdich, R.G. & Shama, G. & Wheatley, A.D. & Sohail, M. & Martin, S.J., 2013. "Kinetics of faecal biomass hydrothermal carbonisation for hydrochar production," Applied Energy, Elsevier, vol. 111(C), pages 351-357.
    6. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    7. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. He, Chao & Tang, Chunyan & Li, Chuanhao & Yuan, Jihui & Tran, Khanh-Quang & Bach, Quang-Vu & Qiu, Rongliang & Yang, Yanhui, 2018. "Wet torrefaction of biomass for high quality solid fuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 259-271.
    9. Zhao, Peitao & Chen, Hongfang & Ge, Shifu & Yoshikawa, Kunio, 2013. "Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion," Applied Energy, Elsevier, vol. 111(C), pages 199-205.
    10. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    11. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    12. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    13. Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
    14. Mäkelä, Mikko & Yoshikawa, Kunio, 2016. "Simulating hydrothermal treatment of sludge within a pulp and paper mill," Applied Energy, Elsevier, vol. 173(C), pages 177-183.
    15. Hridoy Roy & Samiha Raisa Alam & Rayhan Bin-Masud & Tonima Rahman Prantika & Md. Nahid Pervez & Md. Shahinoor Islam & Vincenzo Naddeo, 2022. "A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    16. Peng, Nana & Liu, Zhengang & Liu, Tingting & Gai, Chao, 2016. "Emissions of polycyclic aromatic hydrocarbons (PAHs) during hydrothermally treated municipal solid waste combustion for energy generation," Applied Energy, Elsevier, vol. 184(C), pages 396-403.
    17. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    18. Alessandro Antonio Papa & Andrea Di Carlo & Enrico Bocci & Luca Taglieri & Luca Del Zotto & Alberto Gallifuoco, 2021. "Energy Analysis of an Integrated Plant: Fluidized Bed Steam Gasification of Hydrothermally Treated Biomass Coupled to Solid Oxide Fuel Cells," Energies, MDPI, vol. 14(21), pages 1-13, November.
    19. Michela Langone & Daniele Basso, 2020. "Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways," IJERPH, MDPI, vol. 17(18), pages 1-33, September.
    20. Hrnčič, Maša Knez & Kravanja, Gregor & Knez, Željko, 2016. "Hydrothermal treatment of biomass for energy and chemicals," Energy, Elsevier, vol. 116(P2), pages 1312-1322.
    21. Bayu Indrawan & Pandji Prawisudha & Kunio Yoshikawa, 2012. "Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing," Energies, MDPI, vol. 5(11), pages 1-16, November.
    22. Saimin Huang & Hongchang Wang & Waqas Ahmad & Ayaz Ahmad & Nikolai Ivanovich Vatin & Abdeliazim Mustafa Mohamed & Ahmed Farouk Deifalla & Imran Mehmood, 2022. "Plastic Waste Management Strategies and Their Environmental Aspects: A Scientometric Analysis and Comprehensive Review," IJERPH, MDPI, vol. 19(8), pages 1-31, April.
    23. Sławomir Kasiński & Marcin Dębowski, 2024. "Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts," Energies, MDPI, vol. 17(18), pages 1-33, September.
    24. Mahmood, Russell & Parshetti, Ganesh K. & Balasubramanian, Rajasekhar, 2016. "Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil," Energy, Elsevier, vol. 102(C), pages 187-198.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanfen, Liao & Xiaoqian, Ma, 2010. "Thermogravimetric analysis of the co-combustion of coal and paper mill sludge," Applied Energy, Elsevier, vol. 87(11), pages 3526-3532, November.
    2. Zhao, Peitao & Chen, Hongfang & Ge, Shifu & Yoshikawa, Kunio, 2013. "Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion," Applied Energy, Elsevier, vol. 111(C), pages 199-205.
    3. Ma, Jiao & Mu, Lan & Zhang, Zhikun & Wang, Zhuozhi & Shen, Boxiong & Zhang, Lei & Li, Aimin, 2020. "The effects of the modification of biodegradation and the interaction of bulking agents on the combustion characteristics of biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 209(C).
    4. Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
    5. Wang, Qing & Zhao, Weizhen & Liu, Hongpeng & Jia, Chunxia & Li, Shaohua, 2011. "Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion," Applied Energy, Elsevier, vol. 88(6), pages 2080-2087, June.
    6. Atimtay, Aysel & Yurdakul, Sema, 2020. "Combustion and Co-Combustion characteristics of torrefied poultry litter with lignite," Renewable Energy, Elsevier, vol. 148(C), pages 1292-1301.
    7. Shiqiao Yang & Ming Lei & Min Li & Chao Liu & Beichen Xue & Rui Xiao, 2022. "Comprehensive Estimation of Combustion Behavior and Thermochemical Structure Evolution of Four Typical Industrial Polymeric Wastes," Energies, MDPI, vol. 15(7), pages 1-22, March.
    8. Dai, C. & Cai, X.H. & Cai, Y.P. & Huang, G.H., 2014. "A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty," Applied Energy, Elsevier, vol. 133(C), pages 1-13.
    9. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.
    10. Jin, Yuqi & Lu, Liang & Ma, Xiaojun & Liu, Hongmei & Chi, Yong & Yoshikawa, Kunio, 2013. "Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor," Applied Energy, Elsevier, vol. 102(C), pages 563-570.
    11. Comesaña, R. & Gómez, M.A. & Álvarez Feijoo, M.A. & Eguía, P., 2013. "CFD simulation of a TG–DSC furnace during the indium phase change process," Applied Energy, Elsevier, vol. 102(C), pages 293-298.
    12. Bayu Indrawan & Pandji Prawisudha & Kunio Yoshikawa, 2012. "Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing," Energies, MDPI, vol. 5(11), pages 1-16, November.
    13. He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
    14. Niu, Shengli & Han, Kuihua & Lu, Chunmei & Sun, Rongyue, 2010. "Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate," Applied Energy, Elsevier, vol. 87(7), pages 2237-2242, July.
    15. Wang, Chang’an & Zhang, Xiaoming & Liu, Yinhe & Che, Defu, 2012. "Pyrolysis and combustion characteristics of coals in oxyfuel combustion," Applied Energy, Elsevier, vol. 97(C), pages 264-273.
    16. Baskoro Lokahita, & Muhammad Aziz, & Yoshikawa, Kunio & Takahashi, Fumitake, 2017. "Energy and resource recovery from Tetra Pak waste using hydrothermal treatment," Applied Energy, Elsevier, vol. 207(C), pages 107-113.
    17. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    18. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    19. Siddiqi, Muhammad Hamid & Liu, Xiao-min & Hussain, Muhammad Asif & Qureshi, Tayyab & Tabish, Asif Nadeem & Lateef, Hafiz Umair & Zeb, Hassan & Farooq, Muhammad & Nawaz, Saba & Nawaz, Saher, 2022. "Evaluation of physiochemical, thermal and kinetic properties of wheat straw by demineralising with leaching reagents for energy applications," Energy, Elsevier, vol. 238(PC).
    20. Lu, Liang & Namioka, Tomoaki & Yoshikawa, Kunio, 2011. "Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes," Applied Energy, Elsevier, vol. 88(11), pages 3659-3664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:90:y:2012:i:1:p:298-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.