IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221005028.html
   My bibliography  Save this article

Combustion behaviors of molded bamboo charcoal: Influence of pyrolysis temperatures

Author

Listed:
  • Hu, Wanhe
  • Feng, Zixing
  • Yang, Jianfei
  • Gao, Qi
  • Ni, Liangmeng
  • Hou, Yanmei
  • He, Yuyu
  • Liu, Zhijia

Abstract

To investigate the effect of pyrolysis temperatures on combustion behaviors of bamboo charcoal, molded bamboo rods were carbonized from 200 to 800 °C under the nitrogen atmosphere. Combustion characteristics were determined using thermogravimetric and cone calorimeter. The results showed that pyrolysis temperatures significantly influenced the combustion features of bamboo charcoal. The increase of pyrolysis temperatures decreased the absolute content percentage of carbon, sulfur, oxygen, hydrogen, volatiles, H/C, O/C, energy yield, heat release rate, total heat release, total suspended particulates values, but increased carbon densification factor, fuel ratio, energy enrichment factor, calorific value improvement, the average release of CO and CO2, and effective heat of combustion. The pyrolysis temperature of 350 °C was an essential point in the disappearance of volatile combustion. The maximum HHV of 32.44 MJ/kg occurred at 650 °C of temperature, but the maximum activation energy of 153 kJ/mol was found at 550 °C of temperature. The release rate of elements during pyrolysis was O > H > C > S. The lab-made bamboo charcoal had better combustion behaviors than commercial charcoal. This study will be helpful to convert bamboo biomass to solid biofuel in China.

Suggested Citation

  • Hu, Wanhe & Feng, Zixing & Yang, Jianfei & Gao, Qi & Ni, Liangmeng & Hou, Yanmei & He, Yuyu & Liu, Zhijia, 2021. "Combustion behaviors of molded bamboo charcoal: Influence of pyrolysis temperatures," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221005028
    DOI: 10.1016/j.energy.2021.120253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221005028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia-Maraver, Angela & Perez-Jimenez, Jose A. & Serrano-Bernardo, Francisco & Zamorano, Montserrat, 2015. "Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees," Renewable Energy, Elsevier, vol. 83(C), pages 897-904.
    2. Liu, Zhijia & Mi, Bingbing & Jiang, Zehui & Fei, Benhua & Cai, Zhiyong & Liu, Xing'e, 2016. "Improved bulk density of bamboo pellets as biomass for energy production," Renewable Energy, Elsevier, vol. 86(C), pages 1-7.
    3. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Garofalo, Pasquale & Delivand, Mitra Kami, 2015. "Straw-to-soil or straw-to-energy? An optimal trade off in a long term sustainability perspective," Applied Energy, Elsevier, vol. 154(C), pages 891-899.
    4. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    5. Zhang, Li-hui & Chyang, Chien-Song & Duan, Feng & Li, Pin-Wei & Chen, Sing-Yu, 2016. "Comparison of the thermal behaviors and pollutant emissions of pelletized bamboo combustion in a fluidized bed combustor at different secondary gas injection modes," Energy, Elsevier, vol. 116(P1), pages 306-316.
    6. Hu, Wanhe & Liang, Fang & Xiang, Hongzhong & Zhang, Jian & Yang, Xiaomeng & Zhang, Tao & Mi, Bingbing & Liu, Zhijia, 2018. "Investigating co-firing characteristics of coal and masson pine," Renewable Energy, Elsevier, vol. 126(C), pages 563-572.
    7. Ge, Shengbo & Foong, Shin Ying & Ma, Nyuk Ling & Liew, Rock Keey & Wan Mahari, Wan Adibah & Xia, Changlei & Yek, Peter Nai Yuh & Peng, Wanxi & Nam, Wai Lun & Lim, Xin Yi & Liew, Chin Mei & Chong, Chi , 2020. "Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Rabaçal, M. & Fernandes, U. & Costa, M., 2013. "Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones," Renewable Energy, Elsevier, vol. 51(C), pages 220-226.
    9. Cheng, Zhilong & Yang, Jian & Zhou, Lang & Liu, Yan & Wang, Qiuwang, 2016. "Characteristics of charcoal combustion and its effects on iron-ore sintering performance," Applied Energy, Elsevier, vol. 161(C), pages 364-374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Yanmei & Feng, Zixing & He, Yuyu & Gao, Qi & Ni, Liangmeng & Su, Mengfu & Ren, Hao & Liu, Zhijia & Hu, Wanhe, 2022. "Co-pyrolysis characteristics and synergistic interaction of bamboo residues and disposable face mask," Renewable Energy, Elsevier, vol. 194(C), pages 415-425.
    2. Ni, Liangmeng & Feng, Zixing & Gao, Qi & Hou, Yanmei & He, Yuyu & Ren, Hao & Su, Mengfu & Liu, Zhijia & Hu, Wanhe, 2022. "A novel mechanical kiln for bamboo molded charcoals manufacturing," Applied Energy, Elsevier, vol. 326(C).
    3. Ni, Liangmeng & Feng, Zixing & Zhang, Tao & Gao, Qi & Hou, Yanmei & He, Yuyu & Su, Mengfu & Ren, Hao & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of pyrolysis heating rates on fuel properties of molded charcoal: Imitating industrial pyrolysis process," Renewable Energy, Elsevier, vol. 197(C), pages 257-267.
    4. Gurtner, D. & Kresta, M. & Hupfauf, B. & Götz, P. & Nussbaumer, R. & Hofmann, A. & Pfeifer, C., 2023. "Mechanical strength characterisation of pyrolysis biochar from woody biomass," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Liangmeng & Feng, Zixing & Zhang, Tao & Gao, Qi & Hou, Yanmei & He, Yuyu & Su, Mengfu & Ren, Hao & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of pyrolysis heating rates on fuel properties of molded charcoal: Imitating industrial pyrolysis process," Renewable Energy, Elsevier, vol. 197(C), pages 257-267.
    2. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    3. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    4. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    5. Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
    6. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    7. Kraiem, Nesrine & Jeguirim, Mejdi & Limousy, Lionel & Lajili, Marzouk & Dorge, Sophie & Michelin, Laure & Said, Rachid, 2014. "Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances," Energy, Elsevier, vol. 78(C), pages 479-489.
    8. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    9. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.
    11. Cataldo De Blasio & Gabriel Salierno & Andrea Magnano, 2021. "Implications on Feedstock Processing and Safety Issues for Semi-Batch Operations in Supercritical Water Gasification of Biomass," Energies, MDPI, vol. 14(10), pages 1-19, May.
    12. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    13. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    14. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.
    15. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    16. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    17. Lelis Gonzaga Fraga & João Silva & José Carlos Teixeira & Manuel E. C. Ferreira & Senhorinha F. Teixeira & Cândida Vilarinho & Maria Margarida Gonçalves, 2022. "Study of Mass Loss and Elemental Analysis of Pine Wood Pellets in a Small-Scale Reactor," Energies, MDPI, vol. 15(14), pages 1-15, July.
    18. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    19. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    20. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221005028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.