IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v79y2015icp467-481.html
   My bibliography  Save this article

Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure

Author

Listed:
  • Bhardwaj, Saurabh
  • Dalal, Amaresh
  • Pati, Sukumar

Abstract

The present work numerically analyses the heat transfer and entropy generation characteristics in a two-dimensional porous right-angled triangular enclosure with undulations on the left wall. The enclosure is heated sinusoidally from the bottom wall, while the left wall is maintained at a uniform temperature lower than the bottom one and the right inclined wall is adiabatic. The stream function-vorticity formulation with a finite difference scheme has been incorporated to simulate the results. The effects of Rayleigh number, Darcy number and undulations on the left wall on the heat transfer, fluid flow and entropy generation characteristics have been investigated. It has been revealed that for lower values of Rayleigh number, heat transfer is dominated by the conduction mechanism. However, for higher values of Rayleigh number, heat transfer by convection becomes significant. It has been further revealed that for higher values of Rayleigh number and Darcy number, the dominant source of entropy generation is due to fluid friction. Moreover, the entropy generation due to fluid friction is significantly higher in case of undulations on the wall as compared to the cases with no-undulation, whereas the entropy generation due to heat transfer is almost same for both the cases.

Suggested Citation

  • Bhardwaj, Saurabh & Dalal, Amaresh & Pati, Sukumar, 2015. "Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure," Energy, Elsevier, vol. 79(C), pages 467-481.
  • Handle: RePEc:eee:energy:v:79:y:2015:i:c:p:467-481
    DOI: 10.1016/j.energy.2014.11.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214012912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.11.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basak, Tanmay & Anandalakshmi, R. & Kumar, Pushpendra & Roy, S., 2012. "Entropy generation vs energy flow due to natural convection in a trapezoidal cavity with isothermal and non-isothermal hot bottom wall," Energy, Elsevier, vol. 37(1), pages 514-532.
    2. Guo, Jiangfeng & Xu, Mingtian & Cai, Jun & Huai, Xiulan, 2011. "Viscous dissipation effect on entropy generation in curved square microchannels," Energy, Elsevier, vol. 36(8), pages 5416-5423.
    3. Chen, Qun & Wang, Moran & Pan, Ning & Guo, Zeng-Yuan, 2009. "Optimization principles for convective heat transfer," Energy, Elsevier, vol. 34(9), pages 1199-1206.
    4. Anandalakshmi, R. & Kaluri, Ram Satish & Basak, Tanmay, 2011. "Heatline based thermal management for natural convection within right-angled porous triangular enclosures with various thermal conditions of walls," Energy, Elsevier, vol. 36(8), pages 4879-4896.
    5. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhailenko, Stepan A. & Sheremet, Mikhail A. & Pop, Ioan, 2020. "Natural convection combined with surface radiation in a rotating cavity with an element of variable volumetric heat generation," Energy, Elsevier, vol. 210(C).
    2. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    3. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
    2. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    3. Saidi, Majid & Karimi, Gholamreza, 2014. "Free convection cooling in modified L-shape enclosures using copper–water nanofluid," Energy, Elsevier, vol. 70(C), pages 251-271.
    4. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    5. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
    6. Rashidi, M.M. & Ali, M. & Freidoonimehr, N. & Nazari, F., 2013. "Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm," Energy, Elsevier, vol. 55(C), pages 497-510.
    7. Cheng, Xuetao & Liang, Xingang, 2012. "Heat-work conversion optimization of one-stream heat exchanger networks," Energy, Elsevier, vol. 47(1), pages 421-429.
    8. Cheng, Xuetao & Liang, Xingang, 2012. "Optimization principles for two-stream heat exchangers and two-stream heat exchanger networks," Energy, Elsevier, vol. 46(1), pages 386-392.
    9. Shicheng Wang & Chenyi Xu & Wei Liu & Zhichun Liu, 2019. "Numerical Study on Heat Transfer Performance in Packed Bed," Energies, MDPI, vol. 12(3), pages 1-22, January.
    10. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    11. Sheikholeslami, M. & Gorji-Bandpy, M. & Ganji, D.D., 2013. "Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM," Energy, Elsevier, vol. 60(C), pages 501-510.
    12. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    13. Matin, Meisam Habibi & Khan, Waqar Ahmed, 2013. "Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel," Energy, Elsevier, vol. 56(C), pages 207-217.
    14. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    15. Wei-Tao Wu & Mehrdad Massoudi & Hongbin Yan, 2017. "Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study," Energies, MDPI, vol. 10(4), pages 1-18, April.
    16. Xiaoping Chen & Xiaoming Zhang & Xiaojun Li, 2022. "Evolution Characteristics of Energy Change Field in a Centrifugal Pump during Rapid Starting Period," Energies, MDPI, vol. 15(22), pages 1-15, November.
    17. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    18. Chen, Qun & Pan, Ning & Guo, Zeng-Yuan, 2011. "A new approach to analysis and optimization of evaporative cooling system II: Applications," Energy, Elsevier, vol. 36(5), pages 2890-2898.
    19. Cheng, Xuetao & Liang, Xingang, 2012. "Entransy loss in thermodynamic processes and its application," Energy, Elsevier, vol. 44(1), pages 964-972.
    20. Kefayati, G.H.R., 2016. "Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: ," Energy, Elsevier, vol. 107(C), pages 917-959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:79:y:2015:i:c:p:467-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.