IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v171y2016icp256-265.html
   My bibliography  Save this article

Effects of capillary-assisted tubes with different fin geometries on the performance of a low-operating pressure evaporator for adsorption cooling system applications

Author

Listed:
  • Cheppudira Thimmaiah, Poovanna
  • Sharafian, Amir
  • Huttema, Wendell
  • McCague, Claire
  • Bahrami, Majid

Abstract

This study investigates the performance of a low-operating pressure evaporator using capillary-assisted tubes for adsorption cooling systems (ACS). When using water as a refrigerant in an ACS, the operating pressure is low (<5kPa) and the performance of the system is severely affected when using conventional evaporators. This problem can be addressed by using capillary-assisted evaporators. A custom-built apparatus for evaluating cooling power is used to test five types of enhanced tubes with different fin geometries. Tests were performed with 10–20°C chilled water inlet temperatures and water vapor pressures of 0.5–0.8kPa. The results show that the capillary-assisted tubes provide 1.6–2.2 times greater heat transfer rate compared to a plain tube. Comparing tubes with equivalent inner surface areas (0.049m2/m) and equivalent outer surface areas (0.193m2/m), and different fin heights indicates that tubes with 1.42mm parallel continuous fins (26 fins per inch (FPI)) have a 13% higher heat transfer coefficient than those with 0.9mm fins (40 FPI). The effects of refrigerant height, dead volume inside the evaporator and chilled water mass flow rate on the performance of evaporator are studied. The heat transfer rate increases by 65% when the water height to tube diameter ratio decreased from 1.8 to less than 1. Increasing the chilled water mass flow rate from 2.5 to 15.3kg/min (6.1 times higher) increases evaporator heat transfer coefficient by 110%.

Suggested Citation

  • Cheppudira Thimmaiah, Poovanna & Sharafian, Amir & Huttema, Wendell & McCague, Claire & Bahrami, Majid, 2016. "Effects of capillary-assisted tubes with different fin geometries on the performance of a low-operating pressure evaporator for adsorption cooling system applications," Applied Energy, Elsevier, vol. 171(C), pages 256-265.
  • Handle: RePEc:eee:appene:v:171:y:2016:i:c:p:256-265
    DOI: 10.1016/j.apenergy.2016.03.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916303919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    2. Chen, C.J. & Wang, R.Z. & Xia, Z.Z. & Kiplagat, J.K. & Lu, Z.S., 2010. "Study on a compact silica gel-water adsorption chiller without vacuum valves: Design and experimental study," Applied Energy, Elsevier, vol. 87(8), pages 2673-2681, August.
    3. Sabir, H. M. & Bwalya, A. C., 2002. "Experimental study of capillary-assisted water evaporators for vapour-absorption systems," Applied Energy, Elsevier, vol. 71(1), pages 45-57, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tommaso Toppi & Tommaso Villa & Salvatore Vasta & Walter Mittelbach & Angelo Freni, 2022. "Testing of a Falling-Film Evaporator for Adsorption Chillers," Energies, MDPI, vol. 15(5), pages 1-14, February.
    2. Thimmaiah, Poovanna Cheppudira & Sharafian, Amir & Rouhani, Mina & Huttema, Wendell & Bahrami, Majid, 2017. "Evaluation of low-pressure flooded evaporator performance for adsorption chillers," Energy, Elsevier, vol. 122(C), pages 144-158.
    3. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    4. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    5. Sapienza, Alessio & Palomba, Valeria & Gullì, Giuseppe & Frazzica, Andrea & Vasta, Salvatore, 2017. "A new management strategy based on the reallocation of ads-/desorption times: Experimental operation of a full-scale 3 beds adsorption chiller," Applied Energy, Elsevier, vol. 205(C), pages 1081-1090.
    6. Abadi, G. Bamorovat & Bahrami, Majid, 2020. "Combined evaporator and condenser for sorption cooling systems: A steady-state performance analysis," Energy, Elsevier, vol. 209(C).
    7. He, Fang & Nagano, Katsunori & Togawa, Junya, 2020. "Experimental study and development of a low-cost 1 kW adsorption chiller using composite adsorbent based on natural mesoporous material," Energy, Elsevier, vol. 209(C).
    8. Tokarev, Mikhail M. & Gordeeva, Larisa G. & Grekova, Alexandra D. & Aristov, Yuri I., 2018. "Adsorption cycle “heat from cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica," Applied Energy, Elsevier, vol. 211(C), pages 136-145.
    9. He, Fang & Nagano, Katsunori & Seol, Sung-Hoon & Togawa, Junya, 2022. "Thermal performance improvement of AHP using corrugated heat exchanger by dip-coating method with mass recovery," Energy, Elsevier, vol. 239(PE).
    10. Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thimmaiah, Poovanna Cheppudira & Sharafian, Amir & Rouhani, Mina & Huttema, Wendell & Bahrami, Majid, 2017. "Evaluation of low-pressure flooded evaporator performance for adsorption chillers," Energy, Elsevier, vol. 122(C), pages 144-158.
    2. Chao, Jingwei & Xu, Jiaxing & Xiang, Shizhao & Bai, Zhaoyuan & Yan, Taisen & Wang, Pengfei & Wang, Ruzhu & Li, Tingxian, 2023. "High energy-density and power-density cold storage enabled by sorption thermal battery based on liquid-gas phase change process," Applied Energy, Elsevier, vol. 334(C).
    3. Jung-Gil Lee & Kyung Jin Bae & Oh Kyung Kwon, 2020. "Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents," Energies, MDPI, vol. 13(10), pages 1-16, May.
    4. Tokarev, M.M. & Aristov, Yu.I., 2017. "A new version of the Large Temperature Jump method: The thermal response (T–LTJ)," Energy, Elsevier, vol. 140(P1), pages 481-487.
    5. Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
    6. Sun, X.Y. & Dai, Y.J. & Ge, T.S. & Zhao, Y. & Wang, R.Z., 2017. "Comparison of performance characteristics of desiccant coated air-water heat exchanger with conventional air-water heat exchanger – Experimental and analytical investigation," Energy, Elsevier, vol. 137(C), pages 399-411.
    7. Li, Ang & Ismail, Azhar Bin & Thu, Kyaw & Ng, Kim Choon & Loh, Wai Soong, 2014. "Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight," Applied Energy, Elsevier, vol. 130(C), pages 702-711.
    8. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    9. Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.
    10. Hu, Yiwei & Xu, Jingyuan & Zhao, Dan & Yang, Rui & Hu, Jianying & Luo, Ercang, 2024. "Analysis on a single-stage direct-coupled thermoacoustic refrigerator driven by low/medium-grade heat," Applied Energy, Elsevier, vol. 361(C).
    11. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    12. Steven Metcalf & Ángeles Rivero-Pacho & Robert Critoph, 2021. "Design and Large Temperature Jump Testing of a Modular Finned-Tube Carbon–Ammonia Adsorption Generator for Gas-Fired Heat Pumps," Energies, MDPI, vol. 14(11), pages 1-17, June.
    13. Wang, Dechang & Zhang, Jipeng & Yang, Qirong & Li, Na & Sumathy, K., 2014. "Study of adsorption characteristics in silica gel–water adsorption refrigeration," Applied Energy, Elsevier, vol. 113(C), pages 734-741.
    14. Zhao, Yongling & Hu, Eric & Blazewicz, Antoni, 2012. "Dynamic modelling of an activated carbon–methanol adsorption refrigeration tube with considerations of interfacial convection and transient pressure process," Applied Energy, Elsevier, vol. 95(C), pages 276-284.
    15. Lukasz Lasek & Anna Zylka & Jaroslaw Krzywanski & Dorian Skrobek & Karol Sztekler & Wojciech Nowak, 2023. "Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems," Energies, MDPI, vol. 16(21), pages 1-21, October.
    16. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    17. Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
    18. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    19. Zhao, Y.L. & Hu, Eric & Blazewicz, Antoni, 2012. "A non-uniform pressure and transient boundary condition based dynamic modeling of the adsorption process of an adsorption refrigeration tube," Applied Energy, Elsevier, vol. 90(1), pages 280-287.
    20. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:171:y:2016:i:c:p:256-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.