IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v103y2013icp571-580.html
   My bibliography  Save this article

Experimental study on the effects of the operation conditions on the performance of a chemisorption air conditioner powered by low grade heat

Author

Listed:
  • Kiplagat, J.K.
  • Wang, R.Z.
  • Oliveira, R.G.
  • Li, T.X.
  • Liang, M.

Abstract

A chemisorption air conditioner with NaBr/expanded graphite composite sorbent and NH3 as refrigerant was designed and constructed to be powered by low temperature heat. The effect of independent variables (chilled water inlet temperature, heat source temperature and cycle time) on the coefficient of performance (COP) and cooling power of the machine was investigated with a 2k factorial design experimental set-up. This set-up was extended according to a central composite design to identify the coefficients of a 2° order polynomial equation that related the performance of the system and the independent variables. This equation was used to create response surfaces that enabled the identification of the operation conditions that maximized the machine performance. The experimental results indicated that the machine had a cooling power between 1.27 and 3.16kW and a COP ranging from 0.28 to 0.48, depending on the operation conditions. The response surface analysis showed that when the heat sink was 25±1°C the maximization of the cooling power occurred at a driving heat source of at least 71°C, in cycles not longer than 21min. Contrarily, the maximization of the COP occurred at cycle time above 77min, and heat source of around 56°C. For simultaneous maximization of both the COP and the cooling power, the heat source should be 56°C, and the cycle time between 20 and 25min.

Suggested Citation

  • Kiplagat, J.K. & Wang, R.Z. & Oliveira, R.G. & Li, T.X. & Liang, M., 2013. "Experimental study on the effects of the operation conditions on the performance of a chemisorption air conditioner powered by low grade heat," Applied Energy, Elsevier, vol. 103(C), pages 571-580.
  • Handle: RePEc:eee:appene:v:103:y:2013:i:c:p:571-580
    DOI: 10.1016/j.apenergy.2012.10.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912007313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.10.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oliveira, R.G. & Wang, R.Z. & Kiplagat, J.K. & Wang, C.Y., 2009. "Novel composite sorbent for resorption systems and for chemisorption air conditioners driven by low generation temperature," Renewable Energy, Elsevier, vol. 34(12), pages 2757-2764.
    2. Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
    3. Iloeje, O.C. & Ndili, A.N. & Enibe, S.O., 1995. "Computer simulation of a CaCl2 solid-adsorption solar refrigerator," Energy, Elsevier, vol. 20(11), pages 1141-1151.
    4. Goetz, V. & Spinner, B. & Lepinasse, E., 1997. "A solid-gas thermochemical cooling system using BaCl2 and NiCl2," Energy, Elsevier, vol. 22(1), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Oliveira, Rogério Gomes & Generoso, Daniel João, 2016. "Influence of the operational conditions on the performance of a chemisorption chiller driven by hot water between 65°C and 80°C," Applied Energy, Elsevier, vol. 162(C), pages 257-265.
    2. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    3. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    4. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    2. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    3. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    4. An, G.L. & Wang, L.W. & Gao, J. & Wang, R.Z., 2018. "A review on the solid sorption mechanism and kinetic models of metal halide-ammonia working pairs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 783-792.
    5. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    6. de Oliveira, Rogério Gomes & Generoso, Daniel João, 2016. "Influence of the operational conditions on the performance of a chemisorption chiller driven by hot water between 65°C and 80°C," Applied Energy, Elsevier, vol. 162(C), pages 257-265.
    7. Oliveira, R.G. & Wang, R.Z. & Kiplagat, J.K. & Wang, C.Y., 2009. "Novel composite sorbent for resorption systems and for chemisorption air conditioners driven by low generation temperature," Renewable Energy, Elsevier, vol. 34(12), pages 2757-2764.
    8. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    9. Bao, H.S. & Wang, R.Z. & Oliveira, R.G. & Li, T.X., 2012. "Resorption system for cold storage and long-distance refrigeration," Applied Energy, Elsevier, vol. 93(C), pages 479-487.
    10. Wang, L.W. & Wang, R.Z. & Oliveira, R.G., 2009. "A review on adsorption working pairs for refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 518-534, April.
    11. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    12. Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
    13. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    14. Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
    15. Basdanis, Thanasis & Tsimpoukis, Alexandros & Valougeorgis, Dimitris, 2021. "Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time," Renewable Energy, Elsevier, vol. 164(C), pages 362-374.
    16. Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.
    17. Najjaran, Ahmad & Freeman, James & Ramos, Alba & Markides, Christos N., 2019. "Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator," Applied Energy, Elsevier, vol. 256(C).
    18. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    19. Wang, Dechang & Zhang, Jipeng & Yang, Qirong & Li, Na & Sumathy, K., 2014. "Study of adsorption characteristics in silica gel–water adsorption refrigeration," Applied Energy, Elsevier, vol. 113(C), pages 734-741.
    20. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:103:y:2013:i:c:p:571-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.